



# Reservoir compartmentalisation and seismic interpretation uncertainty: Insights from seismic forward modelling

Oldfield, SJ, Paton, DA, Bramham, EK, and Torvela, T

Conference: Tectonic Studies Group AGM 2018, 3rd to 5th January 2018



#### Acknowledgements





**Ecopetrol** for sponsoring my PhD, titled: "Addressing structural uncertainty through seismic forward modelling"



**TSG** for sponsoring fieldwork and conference attendance during which this work was originally presented



**WUN** for provision of a Researcher Mobility Award to support hosted work at the University of Bergen



**NORSAR** for continued support and collaboration on seismic forward modelling applications



**PDS UK** for sponsoring a fault uncertainty internship

Why forward model?



### Looks pretty

Intuitively; it tells us something

# Sounds clever

Bias towards quantitative methods

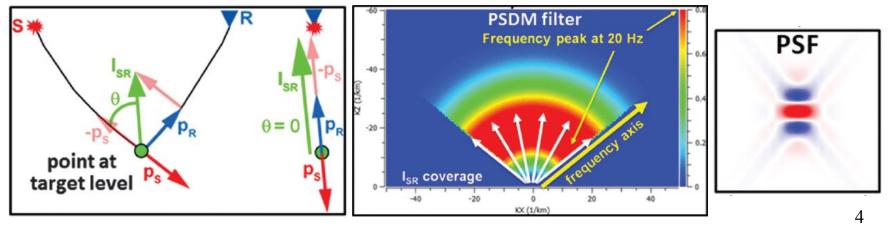
Strategies for useful seismic forward modelling:

- **Comparing** potential geometries
- **Testing** analytical methods
- **Understanding** imaging constraint

Seismic imaging quality



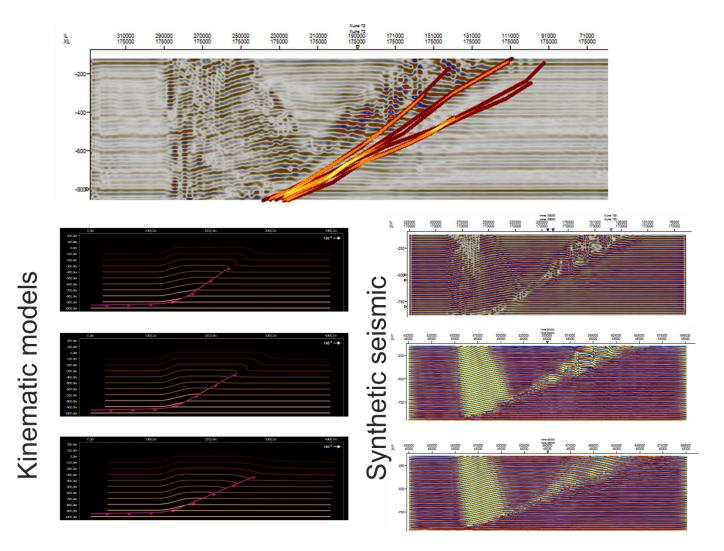
# Resolution


Frequency and velocity dependent

## Detectability

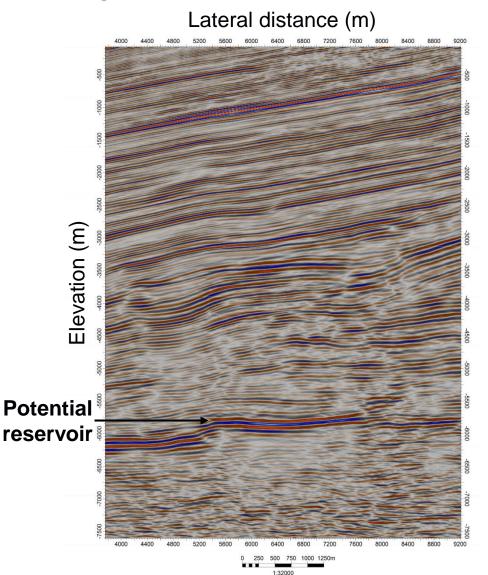
Signal to noise ratio

See Kallweit & Wood (1982)


#### Illumination



After Lecomte et al. (2015)




#### **Multiple interpretations**



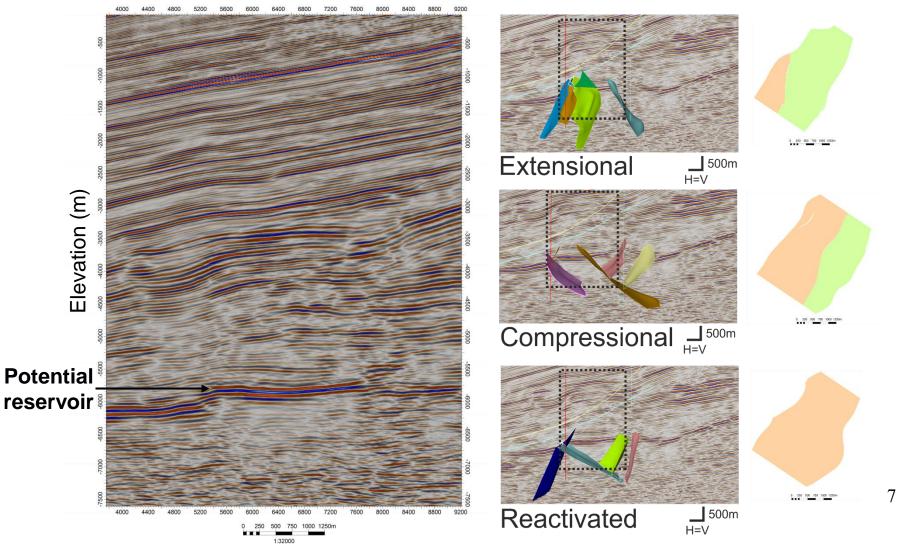
5

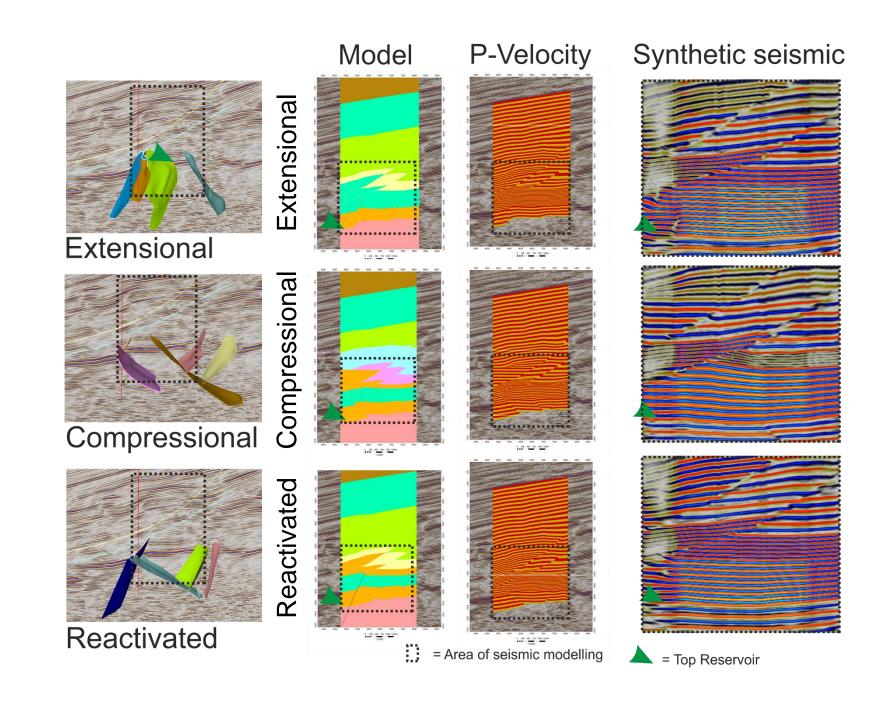
#### Interpretation



UNIVERSITY OF LEEDS

Frontal ranges of the Eastern Cordillera, Colombia

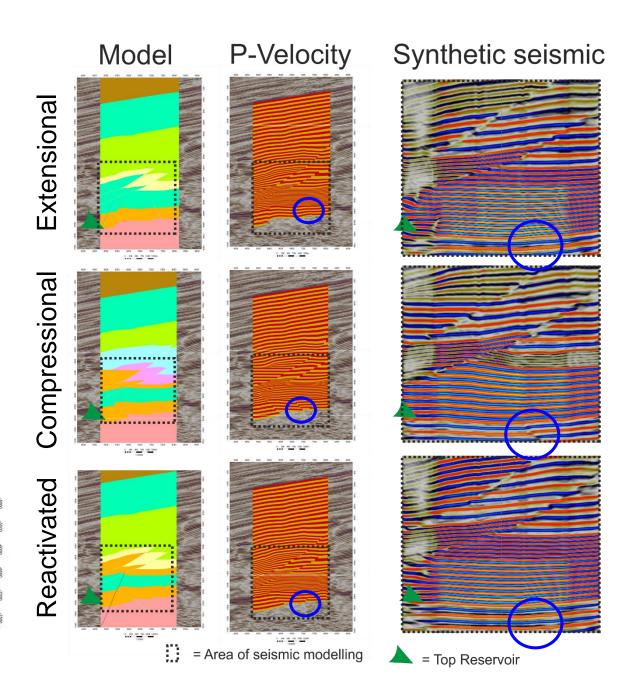

Compressional structures at surface


Structural inversion observed along trend



#### **Alternative interpretations**

Lateral distance (m)






#### Synthetic seismic

Comparison of he synthetic datasets may inform interpretation

Relative likelihood of scenarios defined





#### **Volume calculation**

|                                                               | Extensional           |                        | Compressional          |                        | Reactivated            |  |
|---------------------------------------------------------------|-----------------------|------------------------|------------------------|------------------------|------------------------|--|
|                                                               |                       |                        |                        |                        |                        |  |
| Area                                                          | Ext A                 | Ext B                  | Comp A                 | Comp B                 | React A                |  |
| Area (km <sup>2</sup> )                                       | 1065.5                | 4420.7                 | 4566.0                 | 2951.6                 | 6516.9                 |  |
| Mean Thickness (m)                                            | 56.0                  | 72.4                   | 63.9                   | 96.5                   | 75.8                   |  |
| Gross rock volume (m <sup>3</sup> )                           | 59.6 x10 <sup>6</sup> | 320.2 x10 <sup>6</sup> | 291.6 x10 <sup>6</sup> | 284.8 x10 <sup>6</sup> | 494.1 x10 <sup>6</sup> |  |
| Assuming: average porosity 0.22, average water saturation 0.6 |                       |                        |                        |                        |                        |  |
| HCIIP (m <sup>3</sup> )                                       | 5.2 x10 <sup>6</sup>  | 28.2 x10 <sup>6</sup>  | 25.7 x10 <sup>6</sup>  | 25.1 x10 <sup>6</sup>  | 43.5 x10 <sup>6</sup>  |  |
| HCIIP (MMbbls)                                                | 33.0                  | 177.2                  | 161.4                  | 157.6                  | 273.5                  |  |
| Assuming: formation volume factor 1.2, recovery factor 0.6    |                       |                        |                        |                        |                        |  |
| Recoverable HC (MMbbls)                                       | 23.8                  | 127.6                  | 116.2                  | 113.5                  | 196.9                  |  |
| Prospect totals (MMbbls)                                      | 15                    | 1.4                    | 22                     | 196.9                  |                        |  |

| Case          | Likelihood | Justification                                                                                                     |
|---------------|------------|-------------------------------------------------------------------------------------------------------------------|
| Extensional   | 0.4        | Known passive margin history, normal offset faults visible.                                                       |
| Compressional | 0.2        | Synthetic suggest compressional features would be visible if present. Limited features identified with certainty. |
| Reactivated   | 0.4        | Known passive margin history, normal offset faults visible.                                                       |



#### **Risked volumes**

#### **Decision tree risk analysis**

| Interpretation<br>case |   | COS                  | Fault<br>seal    | Total<br>probability | Potential volume | Risked<br>volume |
|------------------------|---|----------------------|------------------|----------------------|------------------|------------------|
| 0.4 Extensional <      |   | 0.42 Success, p(B) < | 0.5 Fault open   | 0.084                | 151.4            | 12.7             |
|                        | < | 0.42 Success, p(D) \ | 0.5 Fault closed | 0.084                | 127.6            | 10.7             |
|                        |   | 0.58 Failure         |                  | 0.232                | 0                | 0                |
|                        |   | 0.42 Success, p(A) < | 0.5 Fault open   | 0.042                | 229.7            | 9.6              |
| 0.2 Compressional      | < | 0.42 Ouccess, p(A) \ | 0.5 Fault closed | 0.042                | 116.2            | 4.9              |
|                        |   | 0.58 Failure         |                  | 0.116                | 0                | 0                |
| 0.4 Reactivated <      | / | 0.42 Success, p(A)   |                  | 0.168                | 196.9            | 33.1             |
|                        |   | 0.58 Failure         |                  | 0.232                | 0                | 0                |

Recoverable volumes (MMbbls)

#### Total risked volume: 71.0 MMbbl

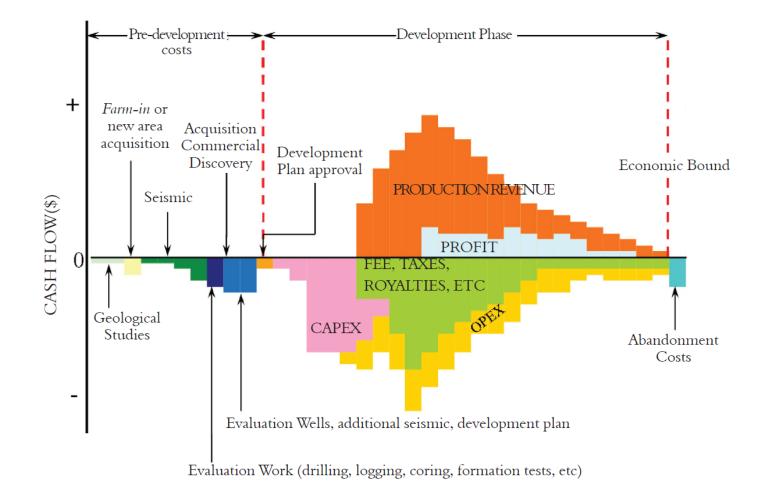
#### Assumptions:

- Risked for a single well development
- Faults taken to be fully open or sealing (50:50)
- Drilling to target largest segment
- COS by personal estimate (T: 0.75, S: 0.7, R: 0.8)



#### Conclusions

| Risk model          | Interpretation | COS  | Fault seal | Risked recoverable volume (MMbbls) |
|---------------------|----------------|------|------------|------------------------------------|
| Best guess          | Reactivated    | 0.42 | N/A        | 82.7                               |
| Multi-deterministic | Multiple       | 0.42 | 0.5        | 71.0                               |

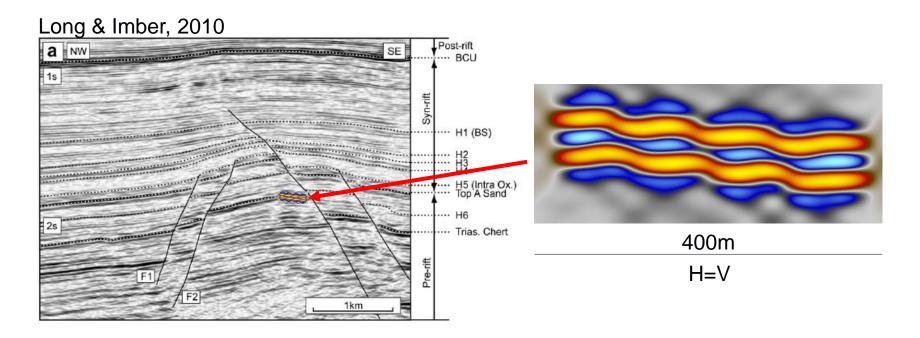

- 16% difference in risked recoverable volume
- Highlights importance of considering multiple models
- Seismic forward modelling may inform interpretation
- Potential to build understanding of relative probability of models

# UNIVERSITY OF LEEDS

#### Bibliography

- BAKKE, K., KANE, I.A., ET AL. 2013. Seismic modeling in the analysis of deep-water sandstone termination styles. *AAPG Bulletin*, **97**, 1395–1419, doi: 10.1306/03041312069.
- BOND, C.E. 2015. Uncertainty in structural interpretation: Lessons to be learnt. *Journal of Structural Geology*, **74**, 185–200, doi: 10.1016/j.jsg.2015.03.003.
- CHAMBERLIN, T.C. 1965. The Method of Multiple Working Hypotheses: With this method the dangers of parental affection for a favorite theory can be circumvented. *Science*, **148**, 754–759, doi: 10.1126/science.148.3671.754.
- EIDE, C.H., SCHOFIELD, N., LECOMTE, I., BUCKLEY, S.J. & HOWELL, J.A. 2017. Seismic interpretation of sill complexes in sedimentary basins: implications for the sub-sill imaging problem. *Journal of the Geological Society*, jgs2017-096, doi: 10.1144/jgs2017-096.
- KALLWEIT, R.S. & WOOD, L.C. 1982. The limits of resolution of zero-phase wavelets. *GEOPHYSICS*, **47**, 1035–1046, doi: 10.1190/1.1441367.
- LECOMTE, I. 1999. Local and controlled prestack depth migration in complex areas. Geophysical Prospecting, 47, 799-818.
- LECOMTE, I., LAVADERA, P.L., ANELL, I., BUCKLEY, S.J., SCHMID, D.W. & HEEREMANS, M. 2015. Ray-based seismic modeling of geologic models: Understanding and analyzing seismic images efficiently. *Interpretation*, **3**, SAC71-SAC89, doi: 10.1190/INT-2015-0061.1.
- SUSLICK, S.B., SCHIOZER, D. & RODRIGUEZ, M.R. 2009. Uncertainty and Risk Analysis in Petroleum Exploration and Production. *Terrae*, **6**, 30–41.
- TVERSKY, A. & KAHNEMAN, D. 1974. Judgment under Uncertainty: Heuristics and Biases. *Science*, **185**, 1124–1131, doi: 10.1126/science.185.4157.1124.
- WIDESS, M.B. 1973. How thin is a thin bed? GEOPHYSICS, 38, 1176–1180, doi: 10.1190/1.1440403.
- WOOD, A.M., PATON, D.A. & COLLIER, R.E.L. 2015. The missing complexity in seismically imaged normal faults: what are the implications for geometry and production response? *Geological Society, London, Special Publications*, **421**, 213–230, doi: 10.1144/SP421.12.

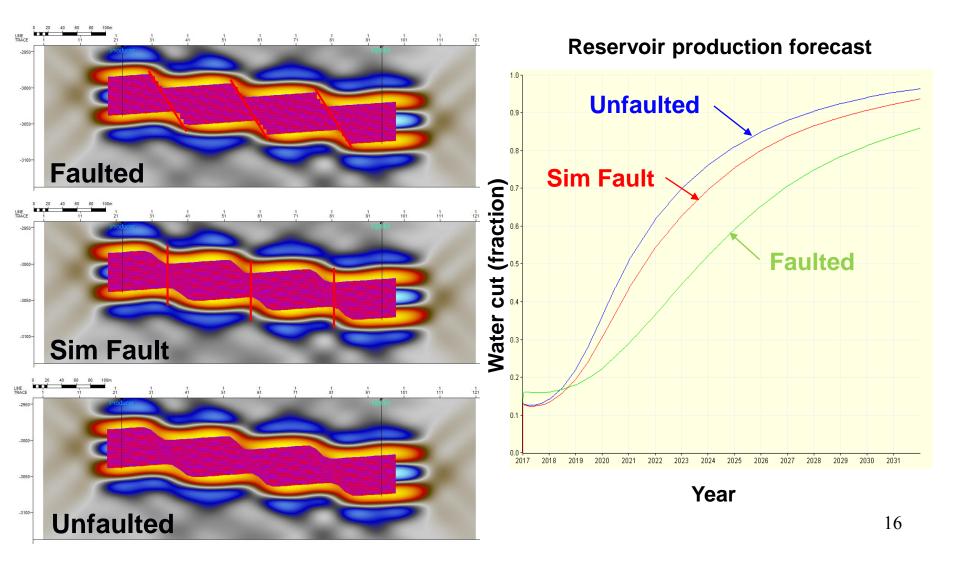





#### Suslick et al 2009

14




#### **Exploration interpretation**



Example of exploration scale interpretation, with local synthetic seismic

# Alternate models from identical seismic



