

Reservoir modelling strategies for intra-reservoir faulting

Oldfield, S.J.¹, Lynch, T.O.¹, Hilton, J.², Lecomte, I.,³ Paton, D.A.¹ and Fisher, Q.J.¹

¹University of Leeds, ²Premier Oil, ³University of Bergen

Conference: Handling Fault Seals, Baffles, Barriers and Conduits: Cost Effective and Integrated Fault Seal Analysis, 15th to 17th November 2017

PhD Title: Addressing structural uncertainty through seismic forward modelling

Issue:

Acquisition of new data often normally modifies our understanding of past interpretations...

e.g. dynamic data and seismic horizon geometry

PhD Title: Addressing structural uncertainty through seismic forward modelling

Issue:

Acquisition of new data often normally modifies our understanding of past interpretations...

Aims:

1) Discuss modelling strategies for newly interpreted small-scale intra-reservoir faulting

e.g. dynamic data and seismic horizon geometry

2) Consider the sensitivity of production forecast to modelling strategy

<u>Authors</u>	Petroleum engineering	Geoscience	NORSAR
Industry practitioners	Jamie Hilton (Premier Oil)	Anon.	ecopetro
Academic supervisors	Quentin Fisher	Douglas Paton, Isabelle Lecomte	midland valley
Academics	Tom Lynch	Simon Oldfield	the structural geology experts

This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Exploration interpretation

Example of exploration scale interpretation

Exploration interpretation

Example of exploration scale interpretation

Exploration interpretation

Example of exploration scale interpretation, with local synthetic seismic

Synthetic seismic

Synthetic seismic – interpreted

Blue lines = Autotracked horizon from reflections

Synthetic seismic – input

Black lines = Faulted input geometry of reflectors

Synthetic seismic – actual vs interpreted

Alternate valid models for interpretation, especially when approaching resolution limits

The premise

- Exploration stage interpretation unlikely to interpret small-scale faulting
- Dynamic data will illustrate true controls on flow

- Reservoir geometry defines gross rock volume a sensitive topic
- How are these features considered in modelling?

Common modelling strategies

Strategy

Faulted

Simulation faults

$\boxed{}$	

Bulk perm

Unfaulted

Bulk perm

Parameters

Juxtaposition

ΤM

Bulk perm

ΤM

UNIVERSITY OF LEEDS

Common modelling strategies

Strategy

Faulted

Simulation faults

Parameters

Juxtaposition TM Bulk perm

TΜ

Bulk perm

Matrix permeability

Matrix permeability = 200mD Equivalent to consolidated sands with a porosity of 15-18%

Transmissibility multipliers (TM)

Base TM = 0.4

Fault throw = 15m

Fault thickness = 0.2m

Unfaulted

Bulk perm

Simulated production strategy

Fixed injection volume

20 reservoir cubic metres/day

Fixed injection pressure

Focuses analysis on reservoir geometry

Modelling parameters	Value
Dimensions	400 x 50 x 50m
Wells	Injector/Producer pair
Production strategy	Waterflood
Aquifer support	None
Run time	15 years

Base cases – Fixed injector pressure

70,000

Base cases – Fixed injector pressure

Production rate normalised to faulted model forecast

Significant affect on Net Present Value dependent on discount rate and costing model

Reservoir pressure ₽ Unfaulted Water 88 production Liquid flow rate (rm³/day) 4 -8 Pressure (bar) Sim-fault 2 9 336 00 Faulted -8 345 Oil production 2 2032 0 2022 2018 2020 2024 2030 2026 2028 Date

Base cases – Fixed volume production rate

Injection rate fixed at 20 rm³/day, illustrating reservoir response

Reservoir modelling strategies

StrategyParametersFaultedJuxtapositionImage: Descent of the second secon

Simulation faults

TM Bulk perm

Unfaulted

Bulk perm

Observations

- Significant pressure draw-down
- Earlier water breakthrough, slower increase in water cut
- Fault geometry necking of reservoir
- Moderate pressure draw-down

- Moderate pressure draw-down

Matching for geological equivalence

Matching for geological equivalence

Conclusions

- Modelling strategy choice is significant
- In the absence of dynamic data; geological rigour is critical
- Sufficient dynamic data may allow decision making with simulation or unfaulted models
- Bottom hole pressure data required
- Sensitivity testing is critical
- Care must be taken with relative permeability and capillary effects
- Faults non-orthogonal to flow are likely exacerbate variance between these models

Basin Structure Group

INSTITUTE OF APPLIED GEOSCIENCE

Thank-you

UNIVERSITY OF LEEDS

Supported by:

the structural geology experts

faulted_alternate_KV01_e100_8, Oil production rate ---- simfault_alternate_KV01_e100_1, Oil production rate ---- simfault_alternate_KV01_e100_9, Oil production rate unfaulted_alternate_e100_7, Oil production rate

faulted_alternate_KV01_e100_8, Oil production cumulative simfault_alternate_KV01_e100_1, Oil production cumulative ---- simfault_alternate_KV01_e100_9, Oil production cumulative unfaulted_alternate_e100_7, Oil production cumulative

faulted_alternate_KV01_e100_1, Oil production rate faulted_alternate_KV01_e100_9, Oil production rate simfault_alternate_KV01_e100_10, Oil production rate unfaulted_alternate_e100_1, Oil production rate """ unfaulted_alternate_e100_8, Oil production rate

- faulted_alternate_KV01_e100_1, Oil production cumulative faulted_alternate_KV01_e100_9, Oil production cumulative simfault_alternate_KV01_e100_10, Oil production cumulative
- unfaulted_alternate_e100_1, Oil production cumulative
- unfaulted_alternate_e100_8, Oil production cumulative