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Image-ray tracing for joint 3D seismic velocity
estimation and time-to-depth conversion

Einar Iversen' and Martin Tygel?

ABSTRACT

Seismic time migration is known for its ability to generate
well-focused and interpretable images, based on a velocity field
specified in the time domain. A fundamental requirement of this
time-migration velocity field is that lateral variations are small.
In the case of 3D time migration for symmetric elementary waves
(e.g., primary PP reflections/diffractions, for which the incident
and departing elementary waves at the reflection/diffraction
point are pressure [P] waves), the time-migration velocity is a
function depending on four variables: three coordinates specify-
ing a trace point location in the time-migration domain and one
angle, the so-called migration azimuth. Based on a time-migra-
tion velocity field available for a single azimuth, we have devel-
oped a method providing an image-ray transformation between
the time-migration domain and the depth domain. The transfor-
mation is obtained by a process in which image rays and isotropic
depth-domain velocity parameters for their propagation are esti-

mated simultaneously. The depth-domain velocity field and im-
age-ray transformation generated by the process have useful ap-
plications. The estimated velocity field can be used, for example,
as an initial macrovelocity model for depth migration and tomog-
raphic inversion. The image-ray transformation provides a basis
for time-to-depth conversion of a complete time-migrated seis-
mic data set or horizons interpreted in the time-migration do-
main. This time-to-depth conversion can be performed without
the need of an a priori known velocity model in the depth domain.
Our approach has similarities as well as differences compared
with a recently published method based on knowledge of time-
migration velocity fields for at least three migration azimuths.
We show that it is sufficient, as a minimum, to give as input a
time-migration velocity field for one azimuth only. A practical
consequence of this simplified input is that the image-ray trans-
formation and its corresponding depth-domain velocity field can
be generated more easily.

INTRODUCTION

Time migration (prestack or poststack) is a well-established and
routinely applied procedure to obtain time-domain images from
seismic reflection data. For simple velocity models, time migration
is characterized by its ability to obtain focused images in the time do-
main. Depth migration, on the other hand, can produce focused
structural images in the depth domain for complex velocity varia-
tions. The main advantage of the time-migration procedure is that it
produces fairly interpretable images quickly and inexpensively. Ex-
cept for strong lateral velocity variations, time migration is very ro-
bust with respect to inaccuracies of the time-domain velocity model.
This is to be compared with the much more involved depth migra-
tion, especially prestack, which requires, besides a well-designed

depth-domain velocity model, significantly more computational ef-
fort.

As compared with common-midpoint (CMP) stacking, which es-
sentially produces seismic data sets corresponding to a simulated ze-
ro-offset (ZO) acquisition, the time migration process generates data
sets with features that are identified more easily with structures in the
depth domain. In particular, triplications typical for unmigrated im-
ages of synclinal structures naturally unfold to synclinals after time
migration.

For any time-domain imaging procedure, the image of a reflector
is called a reflecting horizon. For the same reflector in the depth do-
main, the overall characteristics, kinematic and dynamic, of its cor-
responding reflecting horizon will depend strongly on the acquisi-
tion configuration and imaging procedure that is employed. In accor-
dance with the ray methods that will be used throughout, we envis-
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age the reflector as a smooth continuum of independent point scatter-
ers (or point diffractors) which, because of illumination by seismic
waves, are excited and emit energy toward the surface. Under this
formulation, the image of areflector can be understood as the ensem-
ble of the individual (time-domain) images of the point scatterers
that constitute the (depth-domain) reflector. A review of basic for-
mulas constituting the 3D Kirchhoff prestack time-migration proce-
dure is given in Appendix A.

The basic goal of time migration is to focus the seismic energy
into interpretable time-domain images. Concerning accuracy, espe-
cially with respect to reflector positioning, quite a long struggle ex-
ists in the literature on the pros and cons of prestack and poststack
time migration. As a rule, the widespread use of time migration is a
testimony of its practical usefulness (see, for example, Yilmaz,
2001). Sound criticism of time migration, both in theoretical and
practical aspects, can be found in, for example, Black and Brzos-
towski (1994), Whitcombe (1994) and, more recently, Robein
(2003, Chapter 8).

The time-migration process is quite robust with respect to pertur-
bations of the time-migration velocity model. However, because
time migration commonly is based on a hyperbolic traveltime ap-
proximation, its applicability is limited to velocity models with
small lateral variations (Yilmaz, 2001). Historically speaking, “ide-
al” or “complete” time migration has been considered a process po-
sitioning the reflecting horizons “vertically above” their correspond-
ing reflectors in the depth domain. More specifically, the horizontal
coordinates of each point scatterer on a reflector then would coincide
with the horizontal coordinates (trace location) of its associated
time-migrated image. For this idealized process, it is assumed that
the connection between each point scatterer at the reflector and its
trace location at the surface can be realized by a vertical ray. As a
consequence, the transformation of the traveltime coordinate of a
point on a time-migrated reflecting horizon to the depth coordinate
of its associated point scatterer at the reflector (the so-called time-to-
depth conversion) would be achieved by a simple scaling operation,
namely, multiplication of half the traveltime by an appropriate (aver-
age) medium velocity along the vertical ray.

The above concept of a complete time migration, although useful
as a theoretical framework, is not realistically possible. As explained
in Hubral (1977), the closest feasible alternative is to have a transfor-
mation that uses image rays (and not vertical rays) to connect the
point scatterers at the reflector to their corresponding trace locations
at the surface. For an arbitrary point scatterer on the reflector, the im-
age ray can be defined as a ray connecting the scatterer to the mea-
surement surface in such a way that the slowness vector is normal to
that surface. This definition allows the medium below the measure-
ment surface to be either isotropic or anisotropic. Likewise, the nor-
mal ray can be defined as a ray connecting the point scatterer to the
measurement surface in such a way that the slowness vector is nor-
mal to the reflector (Iversen, 2006). As also described in Hubral
(1977), assuming an isotropic velocity model, the following duality
exists for normal rays and image rays that connect surface measure-
ment to a given reflector scatterer. The former is normal to the reflec-
tor, whereas the latter is normal to the measurement surface.

In spite of widespread use in seismic processing, time migration
also encounters criticism and concern about its application. Black
and Brzostowski (1994) report mispositions of events even with cor-
rect velocity and propose a general correction scheme, called reme-
dial migration. Whitcombe (1994) pointed out that although time
migration produces useful, better interpretable images of reflectors,

the time-migrated section is not the best option for subsequent depth
conversion. He proposes instead to demigrate the interpreted time-
migrated horizons into the unmigrated domain and use normal rays
for depth conversion. According to Whitcombe (1994), the method
combines the good interpretable properties of time migration with
the better positioning provided by depth migration.

From the very definition of time migration, the most consistent
depth conversion would be along image rays in such a way that the
depth velocities needed for the image-ray tracing would be obtained
directly from the given time-migration velocity field. A method that
does exactly that was presented recently by Cameron et al. (2006,
2007). Besides time-migrated data, the method requires in its 3D
version that the time-migrated velocity field is available for at least
three directions along the measurement surface. This requirement
might impose some limitations to the applications of the method in
practice.

Our objective is to present theory and numerical examples for a
3D image-ray tracing and velocity-estimation algorithm in which it
is sufficient to know the time-migration velocity field in a single di-
rection only. Our approach is similar to that of Cameron et al. (2006,
2007), but the range of practical applications is extended. A discus-
sion on the actual differences between the two approaches is provid-
ed in Appendix B.

NOMENCLATURE

To make the mathematical derivations easier to follow, lists of the
most important symbols used in the text are displayed in Table 1.
Lowercase and uppercase letters i and / used as subscripts can have
the values i = 1,2,3, and I = 1,2, respectively. For three-compo-
nent vectors, we use standard notation, for example, a, whereas for
two-component vectors, a bar is printed above the symbol, as in a.
Vectors are considered equivalently as column matrices. To distin-
guish between matrices of size 3 X3 and 2 X 2, we use notations A
and A, respectively. The notation A is used for the transpose of the
matrix A, and A7 is a shorthand notation for A~!". For cases in
which ambiguity can arise, a superscript in the form (g) on vectors/
matrices serves as a label for the coordinate system under consider-
ation. The 3 X 1 column vector containing the first partial derivatives
and the 3 X 3 matrix containing the second partial derivatives of a
scalar field W with respect to the variables, x = (x;), are written in

the forms

aw (W 9w O*w

— =|— and ——5 = . (1)
Jx dx Jx Ix;0x;

i

KIRCHHOFF TIME AND DEPTH MIGRATION

In the following, we review the basics of Kirchhoff time and depth
migration as needed in this article.

Depth migration

A good understanding of how time migration can be carried out
can be gained by examining its relationship to Kirchhoff depth mi-
gration, as applied to a single stacked section. Such a procedure is re-
ferred to as 2D Kirchhoft poststack depth migration. For a given
depth-domain macrovelocity model and a given point in the depth
domain D to be imaged, the Kirchhoff depth-migration operation ba-
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sically consists of a weighted sum of data samples along the diffrac-
tion time surface associated with D, the result of that sum being as-
signed at D.

Under the assumption that a stacked section well approximates
(or simulates) a ZO section, the diffraction time surface associated
with the fixed point D is given by the two-way times along the rays
that connect D to the varying coincident (ZO) source-receiver points
at the measurement surface. According to the theory of Kirchhoff
migration (see, for example, Tygel et al., 1996), for a sufficiently ac-
curate macrovelocity model, the summing operation along the dif-
fraction time surface associated with a point at a reflector will be ap-
proximately tangent to its corresponding reflecting horizon in the
stacked section. As a consequence, the Kirchhoff summation will
provide significant values at the image points D which lie at or are
very close to areflector. For image points D away from reflectors, the
corresponding summation will yield negligible values. The migrated
depth-domain section is obtained by applying the Kirchhoff summa-
tion to a previously defined densely sampled collection of image
points D (e.g., aregular grid).

Table 1. The most important symbols used in the text.

The above considerations show that the Kirchhoff process estab-
lishes for any individual depth reflector a correspondence (or map-
ping) between each point scatterer on the reflector and the tangency
point where the diffraction traveltime surface associated with the
point scatterer meets the reflecting horizon in the stacked section.
Hubral (1977) refers to these tangency points as “scattering centers
for seismic waves.” The Kirchhoff migration thus associates each
scatterer on the reflector to its corresponding scattering center at the
reflecting horizon. Finally, we observe that any point scatterer on the
reflector is connected to the projection on the measurement surface
of its corresponding scattering center by the normal ray.

For an isotropic depth-velocity model with horizontal interfaces
and no lateral velocity variations, it is clear that for each point scat-
terer on a reflector, the normal and image rays coincide, both being
vertical. In this case, the stacked section also coincides with the
time-migrated section, and that also represents a “complete” time
migration, which corresponds to vertical image rays. Apart from this
extremely simple situation, stacking and time migration are bound to
yield very different images of the same depth model.

Symbol Meaning
x = (x) Global Cartesian coordinates of the depth domain
S, T,X=(E+T1)/2,y=(—T1)2 Source/receiver and midpoint/half-offset coordinates at measurement surface
xM,a=Xx—xM Time-migration apex and aperture vectors at measurement surface
t Time variable of the unmigrated time domain
™ Time variable of the migrated time domain
(X,1) Unmigrated time-domain coordinates
(XM, M) Migrated time-domain coordinates
0 Migration azimuth

u = (cos 0,sin §)7

vy=0y), vi=x), y3=T=1M2

Unit vector in the migration azimuth direction

Ray coordinates for a field of image rays

q = (q) Local Cartesian coordinates along the image ray

(@ y3), vs=T Ray-centered coordinates along the image ray

vM(XM (M) Time-migration velocity field for a given migration azimuth

oM () Time-migration interval velocity field for a given migration azimuth

v(x), v(q) Depth-domain velocity field in global and local Cartesian coordinates

v(y) Depth-domain velocity field in ray coordinates

F(y) Velocity spreading factor

M 3 X3 symmetric matrix corresponding to azimuth-dependent migration velocity
X, p Position and slowness vectors of image rays

0
x’, p°, v°, e], TI°, and y°

Image-ray quantities at the initial point y° = (x}/°,/"0 = ()

Q(II), Q(lﬂﬁ 3 X 3 matrices (dx;/dy;) and (dq;/dy,) in global and local Cartesian coordinates, corresponding
to plane-wave initial condition

11 Ray-propagator matrix

Q, P, First set of paraxial matrices, corresponding to plane-wave initial condition

Q.. P, Second set of paraxial matrices, corresponding to point-source initial condition

H= (e e, e;) 3 X3 transformation matrix with columns e;, the ith unit vector of the local Cartesian coordinate

system along the image ray
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Time migration

Time migration can be carried out by a simple modification to the
above-described Kirchhoff poststack depth migration. After stack-
ing along the diffraction traveltime surface of a given depth point D,
all we need to do is to assign the stacking result (the migration out-
put) to the apex of the diffraction traveltime surface instead of as-
signing it to the original depth point D, as would be done in the
Kirchhoff depth-migration counterpart. A geometric outline of the
procedure is depicted in Figure 1. The reasoning for the approach is
simple: The apex of the diffraction traveltime surface for a point
scatterer D represents the stationary traveltime from that point to the
measurement surface. As a consequence, the image ray from D is the
one that has that stationary traveltime.

An underlying assumption of the procedure is that the diffraction
traveltime surface is sufficiently well behaved so that a clear apex
exists. In the absence of abrupt lateral velocity variations, each dif-
fraction traveltime surface can be approximated well by a hyperbo-
loid in the vicinity of its apex. It is then possible to formulate a time-
migration procedure that is based on time-domain computations
only, so that dependency on a depth-domain macrovelocity can be
avoided. Consider for simplicity a single unmigrated zero-offset
section where the inline coordinate is x and the two-way time is ¢. For
each given point (x*,#*) in the time-migrated section to be con-
structed, introduce the hyperbolic traveltime function,

4
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Figure 1. Geometric outline of time-migration procedure in the sim-
ple 2D poststack situation. A diffraction point D on a reflector (blue)
in the depth domain is connected by a normal ray (solid red) to a
common midpoint C on the measurement surface. An image ray
(solid green) connects point D to the projected apex point M belong-
ing to a diffraction curve (dashed black), which is tangent to the un-
migrated horizon (the time-domain counterpart of the reflector,
shown in red) at point C. The time-migrated horizon (green) repre-
sents the continuum of all diffraction-curve apexes related in this
way to the unmigrated horizon.

Depth
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along which seismic data for the samples (x,7) in the given unmi-
grated zero-offset section are stacked. The quantity v™ = v (x", M)
in equation 2 is the time-migration velocity or, in short, the migration
velocity. We remark that equation 2 is relevant for 2D poststack time
migration only and is included here only to introduce briefly the un-
derlying philosophy behind the time-migration concept. For a de-
scription of a corresponding equation that governs 3D prestack time
migration, the reader is referred to Appendix A.

Abasis for any Kirchhoff time-migration procedure (2D/3D/post-
stack/prestack) is the knowledge of a migration velocity field. Let us
emphasize that an in-depth description of the various methods to
perform time migration and migration-velocity analysis is outside
the scope of the present paper. For that, the reader is referred to, for
example, Yilmaz (2001). Here, we only briefly indicate how the mi-
gration velocity can be obtained. One common option in the past was
to use the stacking (NMO) velocity that previously had been deter-
mined for obtaining the CMP-stacked section and eventually apply
an ad hoc scaling factor to it. For dipping structures, an approach of-
ten considered as more adequate has been to use as migration veloci-
ty an NMO velocity corrected for dip moveout (DMO); see Hale
(1984). An example of a modern, automated migration-velocity esti-
mation scheme is reported in Fomel (2003). A discussion on recent
approaches of time-migration velocity analysis and their use in prac-
tical applications is given in Robein (2003).

TIME-TO-DEPTH CONVERSION

The final aim of kinematic seismic imaging is to position reflec-
tors correctly in the depth domain. In this way, time-domain images
such as CMP-stacked or time-migrated sections represent interme-
diate, although very useful, results. A subsequent operation that
transforms a time-domain seismic data set into its corresponding
depth-domain data set is referred to as time-to-depth conversion.

Assume for simplicity that the measurement surface is a horizon-
tal plane located at zero depth. In an analogy to previous notation, let
the unmigrated data set be described by the coordinates (x;,x,?),
where the first two coordinates, x; and x,, specify the location of the
CMP on the measurement surface, and the third coordinate  is time.
Time-to-depth conversion of an unmigrated data set requires that
normal rays can be traced from the measurement surface. This is
possible if information from the time-domain data set as well as ade-
quate structural assumptions for the subsurface allows one to derive
a suitable depth-domain velocity model and the initial directions and
two-way times of the normal rays. In this situation, an event located
in the point (x;,x,,7) of the unmigrated data set is converted from
time to depth by constructing the normal ray that starts at the com-
mon midpoint (x;,x,,x3 = 0) and proceeds to its end point, deter-
mined by the criterion that half of the given two-way time of the
eventt/2 is consumed.

Under the assumption of a 3D isovelocity layered model with
smoothly curved interfaces, Hubral and Krey (1980) propose a re-
cursive algorithm to recover the layer velocities, as well as the posi-
tions and curvatures of the interfaces, from knowledge of the travel-
time function and the first two derivatives with respect to the coinci-
dent source-receiver horizontal location of each reflecting horizon in
the unmigrated data set. Geometrically, the first derivatives of travel-
time are related to the direction of incidence of the normal ray in the
emergence point on the measurement surface. The second deriva-
tives are related to the radii of curvature of the so-called normal-inci-
dence point (NIP) wave in this emergence point.
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In a manner analogous to the previous considerations, time-to-
depth conversion of time-migrated seismic data will be possible if
the information in the time-domain data allows one to trace image
rays in the depth domain. An advantage of such a process, compared
with the previous case involving the unmigrated data set, is that im-
agerays have aknown initial condition, namely, that the initial slow-
ness vector is perpendicular to the measurement surface. For each
point (x}, x3', ) in the time-migration domain, the time-to-depth
conversion moves the event at this point along the image ray that
starts at (x; = x}, x, = x}, x; = 0) on the measurement surface
and proceeds into the depth domain until half of the given time, /2,
is consumed. For a 3D isovelocity layered macrovelocity model in
the depth domain, Hubral and Krey (1980) describe an algorithm to
transform along image rays the locations, dips, and curvatures for
horizon points in the time-migration domain to corresponding loca-
tions, dips, and curvatures for horizon points in the depth domain. A
generalization of this algorithm to include heterogeneous layers is
described by Iversen etal. (1987, 1988).

THEORY

In this section, we explain how we can trace image rays into depth
and simultaneously estimate the velocity along them from knowl-
edge of a 3D time-migration velocity field in an arbitrary single di-
rection along the measurement surface. We observe that the required
single-direction velocities are extracted from an underlying full 3D
time-migration velocity field.

Coordinate systems

The construction of image rays, as envisaged by our methodology,
relies mainly on the concepts and results of standard kinematic and
dynamic ray tracing, as described, for example, in Cerveny (2001).
In this way, it is instrumental to introduce, besides a global depth-do-
main Cartesian coordinate system, x = (x;), additional coordinate
systems that will be associated with the image rays.

The first of these to be mentioned here is the coordinate system as-
sociated with the time-migration domain, (x}/,x3,#). Closely con-
nected to the latter is the ray coordinate systemy = (7;), which de-
fines the image rays issued from all trace locations of the time-mi-
grated seismic data set. This means that the first two coordinates are
defined as v, = x} and y, = xJ'. For the variable along the ray 73,
we shall use the one-way traveltime, denoted by the symbol 7. In
other words, we have y; = T = /2. The 3D curvilinear space
formed by the ray coordinates is referred to as the ray domain. Final-
ly, we shall need also the ray-centered coordinate system, (g1,42, ¥3),
introduced by Popov and P3encik (1978), and a corresponding local
Cartesian coordinate system, q = (g;), which is attached to each in-
dividual point on the image ray. The vectorial function x(y) de-
scribes a mapping of a point v in the ray coordinate system onto a
point x in the global Cartesian coordinate system. Because this map-
ping is based on construction of image rays, we refer to it as image-
ray transformation.

Input data

For the combined image-ray tracing and depth-domain velocity
estimation, we assume the knowledge of a single-direction time-mi-
gration velocity function, v¥ = v (xX™,™, 9), extracted from a full
3D time-migration velocity field. Here, X¥ = (x},x}")” specifies a
trace in the time-migrated data set, 7 denotes the two-way migration

time, and 6 is the angle specifying the direction along which the mi-
gration velocity is given. This angle is referred to in the following as
the migration azimuth or, in brief, azimuth.

Prior to applying our ray-tracing method, it is practical to convert
the time-migration velocity by Dix’s method to the so-called time-
migration interval velocity,

d 12 d 112
vin(y) = WUM(UM)Z] = d—T[T(vM)z] )

The function v, must possess only weak variations with respect to
the lateral coordinates vy, and vy,. In addition, it is essential for the
stability of the ray-tracing procedure that vy, and its derivatives
v 19y, and @*v’ /(3y,0y,) are smooth functions of all three coor-
dinates y;.

Kinematic ray tracing

Abasis for kinematic ray tracing in 3D isotropic elastic media can
be formulated by the ordinary differential equations (see, for exam-
ple, Cerveny, 2001, section 3.1.1)

d

ﬁ = v2(x)p,

dp _q, 0V

— = = 4
T v (X)ax “4)

Evaluation of the above kinematic ray-tracing equations requires
knowledge of the velocity, v(x), and its gradient, Jv/dx, which we
do not have direct access to. As shown below, however, we will over-
come this by further analysis that involves the dynamic ray-tracing
system.

Dynamic ray tracing

The dynamic ray-tracing system, in 3D isotropic elastic media,
now is formulated in ray-centered coordinates. For a fixed image ray,
we consider the attached local Cartesian coordinate system q. For
each coordinate g;, we associate a corresponding unit basis vector e;.
These unit vectors constitute the columns of an orthonormal trans-
formation matrix

H=(e e e;). (5)

The matrix H can be computed in any point along the ray if we in-
clude within the system of ray differential equations the following
equation

d d)
g —v2<el-—p)p, (©)

where dp/dT is given by the second relation in equation 4. Knowing
the vector e; = p/||p|| and the vector e, resulting from numerical in-
tegration including equation 6, the vector e, is obtained easily by the
cross product

e, = e3 Xey. (7)
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In the following, we use the standard formulation of complete dy-
namic ray tracing in terms of 4 X 4 matrices in ray-centered coordi-
nates

dll
— = SII, (®)
dr
with the initial condition
I 0
In° = ( ) 9
01 )

Here, I1 is the ray propagator matrix with submatrices of size 2 X 2,

- (Ql Q2>. (10)

As is well known, the first and second set of paraxial matrices,
(Q,,P,) and (Q,,P,), can be interpreted as plane-wave (or telescop-
ic) and point-source components of the propagator matrix IT (see,
for example, Cerveny, 2001). Because image rays correspond to an
initial plane wave, the relevant set of paraxial matrices is (Q,,P,).
Matrix S in equation 8 has the definition

0 o | 92
S:( ), whereVz( g ) (11)
9q199;

Relating time- and depth-domain velocity functions

To simplify the notation, we shall consider in the following three
velocity functions, all of them denoted by the letter v, and distin-
guished solely by their arguments: v(x), v(vy), and v(q). More spe-
cifically, v(x) and v(y) will designate the depth-domain velocity in
global Cartesian coordinates and ray coordinates, respectively. In a
standard forward ray-tracing application, that is, when image rays
are computed from a known velocity field v(x), the velocity v(y) can
be obtained for each ray (for which the first two components, ¥
= (1, y2)"are fixed) simply by assigning the value v(x) at each po-
sition x on the ray to the corresponding coordinate vector . Finally,
for any selected point on the ray, v(q) defines the velocity in the local
Cartesian coordinate system.

As shown in Appendix C, the ray-domain velocity v(y) will be
given by

v(y) = v (VF(y), (12)

where F, referred to as the velocity spreading factor, is given by

— S R
F(y) = M (13)
{l_lTQz_ 1Q2— Tl—l}l/z :
In the 2D situation, the factor F reduces to the simple formula
F(y) = 0y, (14)

where Q, is the scalar that corresponds in 2D propagation to the 2
X 2 transformation matrix Q;, which refers to the 3D situation.

Equation 14 is equal to the one given in Cameron et al. (2006, 2007).

We note that although v}, is directly available as input, the factor
F depends on quantities belonging to dynamic ray tracing along the
image ray. This means our image-ray construction must contemplate
a simultaneous solution of the kinematic and dynamic ray-tracing
systems.

Derivatives of velocity functions

We now address the problem of determining the velocity deriva-
tives dv/dx and 9*v/Jq* that are needed in the kinematic and dy-
namic ray-tracing systems formulated above. These will be given in
terms of the ray-domain velocity derivatives, dv/dy and J*v/d¥?,
respectively. The latter derivatives are related closely to the corre-
sponding derivatives of our input time-migration interval velocity
field vl

For first-order derivatives, a simple application of the chain rule
of advanced calculus yields

Jv dx; dv
= o (15)
dy;  dvyidx;
and introduces the matrix
N 0x;
Q" = (—) (16)

of the transformation between ray coordinates (7;) and global Carte-
sian coordinates (x;). Furthermore, one can relate matrix (A)(l") to its
counterpart, (A)(l") = (dq:/d7,), in local Cartesian coordinates by the
transformation

0
QY - QY. where 0 =| ¥ 0] an
00 v

We recall that H is the 3 X 3 matrix given by equation 5, and Q, is the
2 X2 upper left submatrix of the 4 X 4 ray-centered propagator ma-
trix I1 of equation 10. Under the assumption that the inverse matrix,
((A)ﬁ")) ~!' = (dy,/dx;) exists (or, equivalently, that det QW +0),
equation 15 can be recast as

2@ (18)
ox ay

The existence of the inverse matrix ((A)(f)) ~!for all considered val-
ues of the ray-coordinate vector y ensures a one-to-one correspon-
dence between ray coordinates and depth-domain coordinates, x
= x(vy) and y = y(x). Thus, in this particular situation, each point
in the depth domain is connected to the measurement surface by at
most one image ray only, and the image-ray field does not contain
caustic points. We remark in passing that the condition det Q(l‘) #0
has to be fulfilled in any implementation of the image-ray construc-
tion considered here. To obtain the relationship between the second
derivatives of velocity in ray coordinates and local Cartesian coordi-
nates, the chain rule needs to be applied twice.
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As shown in Appendix D, we have

P ﬂﬁ( v P ﬂ)
IGNIGum IgnIGu\d Y0y, dydy;dqk
+M v (19)
o1

where My, = 9°T/dqyndqy- Atthis point, itis essential to emphasize
that conventional dynamic ray tracing for a single ray does not allow
computation of derivatives of gx of orders two and higher. Hence, we
can conclude that if the procedure is to be based on computations
along a single ray only, we have to assume that such derivatives have
negligible values. Given that this assumption is satisfied, equation
19 can be approximated by the simpler matrix expression,

&_Q—Tﬁ_zl) -
1 (9?2 1

| Jdv
- +M,—, (20)
aq aT

where M, = 9°T/dq*> = P,Q; '. Equations 18 and 19 (or equation
20) provide the link between the first and second derivatives of ve-
locity with respect to ray coordinates and the corresponding velocity
derivatives with respect to global Cartesian coordinates and ray-cen-
tered coordinates, respectively. As seen in the next section, this link

will be crucial for the image-ray tracing and velocity-estimation al-
gorithm that is proposed here.

Numerical integration along the image ray

Collecting results, the complete set of ordinary differential equa-
tions integrated to obtain the image ray is specified by equation 4, 6,
and 8. As input to the evaluation of the right-hand side of the differ-
ential equations, we have the independent variable along the ray, 7,
and the set of dependent variables, x, p, e;, and I1. We also need as
input the horizontal coordinates of the starting point of the image ray,
x)°; the unit vector corresponding to the migration azimuth, @; and
the time-migration interval velocity field, v’ (y). An important part
of the procedure is on-the-fly transformation of function values, first
derivatives, and second derivatives belonging to the time-migration
interval velocity field, v}, (), to corresponding quantities in the ray-
domain velocity field, v(7y). For a better appreciation of the numeri-
cal integration scheme that is central to our time-to-depth conversion
algorithm, we have specified in Table 2 the sequence of computa-
tional operations involved in evaluating the differential equations. It
has been assumed that derivatives along a ray of ray-centered coor-
dinates, g, of higher order than one in the ray parameters, vy,, can be
neglected.

For the isotropic conditions under consideration, the ray-domain
velocity can be obtained, besides from equation 12, as the inverse
length of the slowness vector,v = ||p|~". This provides a possibility
of checking the numerical accuracy during integration of the differ-
ential equations. For details concerning computation of velocity de-
rivatives along the image ray, see Appendix E.

Table 2. Proposed sequence of computational steps involved in evaluating the right-hand side of the system of ray differential

equations.

Step Equation

number Description number

1 Form the vector y = (y,,v,,T)", where y, = x’l‘“’ and y, = )C’ZW0 are fixed for all computations along the ray.

2 Evaluate the time-migration interval velocity, v, and its derivatives, dv'./dy, and d%'./dy,3y,.

3 Calculate the factors A, B, and F: A = 0u'Q,'Q,u, B=1u"Q,'Q,u, and F = A/B'2. E-4, E-5

4 Establish the depth-domain velocity, v = v}l F. 12

5 Evaluate the differential equations dx/dT = v’p, dQ,/dT = v’P,. 4,8, 10, 11

6 Find the two remaining basis vectors of the local Cartesian coordinate system, using e; = p/||p|| and 7,5
e, = e; X e,. This yields the transformation matrix H = (e, e, e;).

7 Use the transformation Q(X) = I:I(A)(‘f). 3,17

8 Find derivatives of the factors A, B, and F, using the equations dA/dT = — v2u’Q, 'Q;"a = —v?B, E-6, E-6, E-5
OBIIT = —2020'Q; 'P,Q; 'Q; T8, and dF/IT = (9A/IT)B" — (9BIIT)(A/2)B~ 2.

9 Apply approximations for derivatives of factor F along the ray, which yields dv/dy, = v’y /dy,F and E-3
dv1dT = 9o |aT F + v} dF/T.

10 Obtain the velocity gradient in depth-domain Cartesian coordinates by dv/dx = (QW)~Tav/dy. 18

11 Evaluate the differential equations for the vectors p and e, dp/dT = —v~'dv/Jx, 4,6
de,/dT = —v*(e,-dp/dT)p.

12 Find the approximate second derivatives d*v/dy,dy, = (d*vy./dy,;0y,) F and apply the transformation E-3, D-10
P0/0q = Q; 1(9%/93?)Q; ' + M,(dv/dT), with M, = P,Q; .

13 As a final step, evaluate the differential equations for matrices P; by dP,/dT = — v~'VQ,. 8, 10, 11
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Initial conditions for tracing the image ray

To solve the kinematic and dynamic ray-tracing systems, initial
conditions have to be provided. These consist of initial values, x°, p°,
e, and II°, given for the initial ray coordinate vector y°
= (99,99, ¥97. Assuming for simplicity a planar horizontal datum
surface, x; = 0, for the time-migrated data, we set Y% = x'°, ¥
= x)® as the horizontal coordinates of the starting point of the image
ray. The given pair (x}/°,x}°) also specifies the trace location in the
time-migrated data set that corresponds to the image ray to be con-
structed. The initial traveltime of the image ray is y§ = T° = 0.

Because the initial slowness vector of an image ray p° is always
perpendicular to the measurement surface, the two horizontal slow-
ness vector components will both be zero, that is, p! = pJ = 0. The
vertical slowness vector component is given by the inverse ray-do-
main velocity, p] = 1/v,, at the trace location (x°,x3"°) and zero
migration time, tM° = 27° = 0. Furthermore, one can show (Ap-
pendix E) that the factor F in equation 13 has the limit one when the
migration time approaches zero. Hence, equation 12 yields the ini-
tial ray-domain velocity as

v’ = v (¥"). (21)

Given the above specifications, the kinematic initial conditions for
the image ray read

1 T
x? = (}"0,x57°,0)" and p° = (0,0@) . (22

1.0

€ 1500
_*:‘ 20 1600
= 3.0 1700
8 1800
4.0 1900
2000

2100 @

20 40 60 80 100 120 2200 E

Horizontal coordinate x, (km) 2300 E

—2400 g

—2500 @

— 2600
= 2700

= 2800
2900
3000

3100

2.0 4.0 6.0 8.0
Horizontal coordinate x, (km)

2300
2325
2350
2375
2400
2425
2450
— 2475
— 2500

2525
2550
2575

= 2600

Velocity (m/s)

>
o

Horizontal coordinate x, (km)

N
=)

2.0 4.0 6.0 8.0 10.0 12.0
Horizontal coordinate x; (km)

Figure 2. Depth-domain velocity used for generating input data for
the tests. Top: section x, = 5 km. Middle: section x; = 7 km. Bot-
tom: depth slice x; = 2 km.

The initial unit vector ) of the ray-centered coordinate system can
be chosen quite freely within the horizontal plane. One option is to
align it with the migration azimuth direction, in other words, to spec-
ify ) = (cos 0,sin #,0)". The initial ray-propagator matrix, II°, is
the 4 X 4 identity matrix given by equation 9.

NUMERICAL EXAMPLES

In this section, we consider, as a first illustration of the method, ex-
amples based on a 3D model of the subsurface. Three cross sections
through the P-wave velocity field of this model are shown in Figure
2. The velocity field contains mild lateral variations and is smooth
throughout; that is, it has no interfaces, discontinuities, or areas
without data.

To obtain input data for the numerical tests, image rays were
traced a one-way time 7' = 2 s downward from a planar measure-
ment surface, located at depth x; = 0 km. Figure 3 shows image
rays projected into the three global Cartesian coordinate directions.
One can observe deviations of rays from the vertical. Nevertheless,
the velocity variations responsible for these deviations do not intro-
duce triplications and caustics in the image-ray field. To facilitate
display and comparisons of velocities, positions, and their errors, we
show in the following all results as functions of the coordinates of
the time-migration domain. As an introduction to this type of dis-
play, consider Figure 4, which shows the “true’” depth-domain veloc-
ity posted along the generated image rays.

g

2.0 4.0 6.0 8.0 10.0 12.0
Horizontal coordinate x, (km)

Figure 3. Projections of image rays in (top) x, direction, (middle) x,
direction, and (bottom) x; direction.
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Figure 4. Depth-domain velocity as a function of time-domain coor-
dinates. Top: section x, = 5 km. Middle: section x; = 7 km. Bot-
tom: time slice ¥ = 2 s.
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Figure 5. Time-migration velocity as a function of time-domain co-
ordinates. Top: section x) = 5 km. Middle: section x}/ = 7 km.
Bottom: time slice 7 = 2 s.

By calculating the ray-propagator matrix along the rays, we ob-
tained as a by-product the matrix of second derivatives of the one-
way diffraction time, which contains information about migration
velocity for any azimuth 6. Thereafter, we specifically selected the
migration velocity field corresponding to the azimuth = 0° (Fig-
ure 5) and converted it to a time-migration interval velocity field
(Figure 6), using Dix’s method (see equation 3). The reason for cal-
culating the input data in this way was to attain control of errors re-
sulting from the image-ray transformation alone. We remark in pass-
ing that an equivalent approach to obtaining time-migration interval
velocities is to use equation C-11.

The experiments were conducted with two transformations relat-
ing the time and depth domains. One approach was established by
neglecting all lateral variations of the time-migration interval veloc-
ity. Because this action results in vertical image rays, we refer to it as
vertical-ray transformation. The other approach is based on the
methodology for the image-ray transformation presented in this pa-
per but with the underlying assumption that the derivatives of ray-
centered coordinates along a ray, g, of higher order than one in the
ray parameters, y,, can be neglected.

Considering first the vertical-ray transformation, Figure 7 shows
errors in the estimation of the position (x;) for a selected time slice,
™ = 2 s. The corresponding errors resulting from the image-ray
transformation are shown in Figure 8. The latter displays can be
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Figure 6. Time-migration interval velocity as a function of time-do-
main coordinates. Top: section x} = 5 km. Middle: section x}
= 7 km. Bottom: time slice t¥ = 2 s.
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Figure 7. Vertical-ray transformation approach. Depth-domain posi-
tion errors for time slice t = 2 s. Coordinates (top) x;, (middle) x,,

and (bottom) x3.
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Figure 8. Image-ray transformation approach. Depth-domain posi-
tion errors for time slice t = 2 s. Errors of coordinates (top) x;,
(middle) x,, and (bottom) x;.
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interpreted as estimated time-to-depth conversion errors for a virtual
flat horizon in the time-migration domain. A possibility of direct
comparison between the vertical-ray and image-ray transformations
is provided in Figure 9. It can be concluded that errors arising from
the applied image-ray transformation are smaller than those of the
vertical-ray transformation, particularly with regard to the error in
lateral positioning. In Figure 10, one can compare the accuracy of
the depth-domain velocities obtained by the two approaches. Again,
the image-ray transformation generally yields smaller errors. We re-
mark, however, that this approach is quite sensitive to the smooth-
ness of the first- and second-order derivatives of the time-migration
interval velocity field.
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Figure 10. Comparisons of depth-domain velocities for time slice
™ = 2 s. Error using (top) vertical-ray and (middle) image-ray
transformation. Bottom: difference between vertical-ray and image-
ray transformations. Velocity differences in the top, middle, and bot-
tom subfigures correspond, respectively, to the position differences
in Figures 7-9.

CONCLUSIONS

Starting from a given 3D time-migration velocity field, available
for a single migration azimuth, we have presented an efficient
scheme to trace image rays and simultaneously to estimate the veloc-
ity along them. The obtained velocities can provide, after regulariza-
tion, a depth-domain velocity field that can be useful for many seis-
mic applications. These include, for example, the use of the estimat-
ed velocity field as a macrovelocity model for depth migration or as
an initial model for tomographic inversion. The proposed scheme
also provides the basis for time-to-depth conversion without the
need for a priori information of the depth-domain velocity model.
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We have benefited greatly from recent investigations that estab-
lish the link between the time-migration interval velocity and the
corresponding velocity along the image ray. The resulting algorithm
for 3D image-ray tracing into depth uses a time-migration velocity
field known in three azimuths. In this paper, besides reviewing the
literature, we have introduced an alternative algorithm, which re-
quires knowledge of the time-migration velocity field in only a sin-
gle azimuth. As a consequence, we foresee that our approach will be
easier to use in practice. The new algorithm has been applied and dis-
cussed on a 3D synthetic example. An overall impression from this
first test is that errors generated by the developed image-ray transfor-
mation are smaller than those of the classic vertical-ray transforma-
tion, particularly concerning lateral positioning.

The present scheme is bound to yield best results whenever time
migration provides sufficient focusing and a reliable time-migration
velocity field. As its main advantage, it delivers a direct estimation of
the depth-domain velocity with a minimum of user interaction/inter-
vention. The method is very efficient as compared, for example, with
full prestack depth migration and associated estimation of depth-do-
main velocity parameters. The constraints or limitations of the pro-
posed procedure are those basically inherited by the use of time mi-
gration, the ray method, and Dix’s type velocity inversions. For ade-
quate ray-tracing implementation, the time-migration interval ve-
locity function and its first-and second-order derivatives all need to
be “sufficiently smooth.” Moreover, the resolution in the velocity es-
timation is expected to be poor for deep and/or thin “layers.” As an
additional condition for effective implementation, care should be
taken so that the image-ray field has no triplications and caustics.
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APPENDIX A

3D KIRCHHOFF PRESTACK TIME MIGRATION

As explained in the introduction, Kirchhoff time migration and
time-migration velocity analysis are realized in the same way as a
CMP stacking and velocity analysis, under the use of an appropriate
traveltime operator. This operator is the hyperbolic diffraction trav-
eltime defined below. For more information on the conceptual and
practical aspects of time migration, we refer to Hubral and Krey
(1980), Yilmaz (2001), and Robein (2003).

HYPERBOLIC DIFFRACTION
TIME APPROXIMATION

Let s and r denote the three-component position vectors for the
source and receiver, respectively. In addition, define § = (sy,s,)”
and T = (r,r,)7, and assume s; = r; = 0. We also introduce the
midpoint vector, X = (x;,x,)", and the half-offset vector, y
= (y1,y2)". Observe that for the cause of clarity, we do not distin-
guish the notation of midpoint vector components and global Carte-
sian coordinates. The vectors's and T are expressed in terms of the
vectors X andy by

S=X+y, T=X-Y. (A-1)

Let vector X define a location onto which contributions from trace
(s,r) will be migrated. Introducing the migration aperture vectora as

a=%x-3%x", (A-2)
we can write
s—x"=a+y, r—-x"=a-y. (A-3)

One-way times from a diffraction point x” in the subsurface to the
source and receiver points s and r now can be expressed by the sec-
ond-order approximations

IS(E,XD) — l‘s(iM,XD) + (r)s(x))T(g _ ?(M)

1
+ 5(5 - MTMWE — M), (A-4)

tr(f‘,XD) — tr(iM,XD) + (I—)r(x))T(f. _ iM)
- %(T‘ - M™MOI(E — xM).  (A-5)

The vectors p*™ and p’™ have components

ar at’
s(o) — 20 rx) _ 28 (A—6)
! ds 1 P ar 7 ’
evaluated at's = X and T = X", respectively. The 2 X 2 matrices
M:*® and M’™ have elements

% It
s [Mr(X)]I.I = s (A'7)
dsds; dridry

[M&(X)]u =

also evaluated fors = X” andT = X", respectively.
A second-order approximation to the diffraction time now can be
formed as

PG,r,xP) = £(65,xP) + 7(F,xP). (A-8)

We assume that traveltimes #* and 7" correspond to the same elemen-
tary wave mode, for example, a direct P-wave. This means that
#(XM,xP) = r(xM,xP), p'¥ = p'™, and M*® = M'™. For conve-
nience, the latter quantities thus are written in the following without
superscripts s and r. Assume in addition that x¥ is a stationary point
for the diffraction time. This has the consequence

P+ pW = 2pW = 0. (A-9)

By squaring equation A-8, neglecting terms of order three and
higher, and applying the transformations in equation A-3, we obtain
the following hyperbolic approximation to the diffraction time:
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2

PEMMay)? =M+ 2Ma" MYEY,M)a
+ Y MYEM, M)y]. (A-10)

Here, t* is the two-way time between the points x” and x¥, i.e.,

M = 2:xM,xP). (A-11)

Equation A-10 is equivalent to equation 11.4 in Hubral and Krey
(1980), the only difference being that the half-offset vector is defined
with opposite sign.

Introducing the notationu(6) = (cos 6,sin #)7, let us now write

a=au(g,), y=yud,), (A-12)

witha = |[a] andy = |[y| and define the direction-dependent migra-
tion velocity by the equation

2
M=M 2 _
[ 0)] Ma(6) MYEM, M)u(9)’

in accordance with equation 11.3 of Hubral and Krey (1980). This
yields

(A-13)

+ 4—612

[M&M,M,0,)1
4y2

" [MEM,M60)1

Equation A-14 describes a diffraction time approximation relevant
for afull 3D prestack time migration. We see that a 3D prestack time-
migration velocity field is equivalent to the knowledge of the 2 X2
symmetric matrix M®(x, ) at each point (X, ") of the time-mi-
grated volume. In other words, the three independent elements of
that matrix need to be known at each time-migrated point.

In the particular situation that the half-offset vector y is always
parallel to the aperture vectora, in which we can write 0 = 6, = 0,,
equation A-14is recast in the simple form

4(a® + ¥?)
&M, M, 0)F
The above equation provides the diffraction-time approximation rel-

evant for 2D prestack time migration. In the zero-offset situation (y
= 0), equations 2 and A-15 are equivalent.

PEMay,0,0,)° = M

(A-14)

PEM M a,y,0)? = M + (A-15)

APPENDIX B

COMPARISON WITH THE APPROACH
OF CAMERON ET AL. (2007)

The time-to-depth conversion procedure presented in this paper
is based on the knowledge of migration velocity, v™(X",, ), corre-
sponding to a single azimuth #. Cameron et al. (2007) presented a
different time-to-depth conversion approach, relying on the com-
plete information of the variation of migration velocity with azi-
muth. This information is contained in the matrix M™ (X", ). When
matrix M® is known for all relevant locations in the domain (X, ),
one easily can obtain the inverse matrix

N® = M@ (B-1)

as well as the derivatives

dNW ANW

ar " dM -

(B-2)

Matrix W, constituting the input data for the time-to-depth conver-
sion in the approach of Cameron et al. (2007), is related to depth-do-
main velocity v and matrix Q{” by (see their equation 27)

W =0%Q Q). (B-3)

Introducing a unit azimuth direction vector u and using the above
equation, one can write

v’ = W'WEq, (B-4)

where matrix E is defined as
T
E = Q{" QY. (B-5)
Equation B-4 can be compared with our result
v? = (vl )2F?. (B-6)

Equations B-4 and B-6 represent two bases for time-to-depth
conversion and velocity estimation. The approach based on equation
B-4, described by Cameron et al. (2007), uses as input matrix W.
The dynamic ray tracing required for calculation of matrix E in-
volves calculation of matrices Q; and P,, which means calculation
of the second set of paraxial matrices is not required. The approach
described in this paper, which is based on equation B-6, uses as input
the time-migration interval velocity v’y for a selected azimuth direc-
tion u. The dynamic ray-tracing procedure needed for calculation of
factor F, however, requires calculation of both sets of paraxial matri-
ces, (Qr.P)).

APPENDIX C

VELOCITY SPREADING FACTOR
FOR THE IMAGE RAY

Derivations for velocity spreading along the image ray in the 2D
and multiazimuth 3D situations were given in Cameron et al. (2006,
2007). In this appendix, we derive equation 13 for the velocity
spreading factor F pertaining to the single-azimuth 3D case. Our
starting point is equation A-13, relating the azimuth-dependent mi-
gration velocity v¥(X¥,1", 0), to the 2 X 2 matrix, MW (XM, ), of
second derivatives of one-way (upward) traveltime. Introducing the
one-way, downward, migrated time 7 = /2 and simplifying the
notation, we can write

1

M2 _
M = Svog

(C-1)

where U is the direction vector for the migration azimuth used to ob-
tain the migration velocity v¥. One can relate matrix M™ to the cor-
responding matrix M] expressed in the ray-centered coordinates for
the upward direction of the image ray, as follows,

MY = P*MII*, (C-2)

1*—(_1 0) C-3
N0 1) (C3)

where
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Inserting M} = PJQ} ' and applying the relations for backward
propagation of the ray propagator matrix in Iversen (2006), we ob-
tain
MY = QI Qi) "'I* = QIQ, ' = Q, Q).
(C-4)

The last operation is a consequence of the fact that matrix M® is
symmetric. Considering again equation C-1, the migration velocity
therefore can be calculated from the equation

1
T 1y =
uQ, Qu
Substituting equation C-5 into the Dix velocity equation 3, we obtain
the important relation

T[oM]? = (C-3)

_Ti —1 —

(M2_i[ | }__lldt[Qle]ll

T arwor em | T T Twes el
o)

To compute the derivative in the above equation, we observe that
for an isotropic medium, the differential equation for paraxial matrix
Q, forl = 1,2,is

d dQ;
a%l = v?P, and also 3IT = - 0%Q; 'PQ; . (C-7)

The rightmost equation was obtained under the application of the ge-
neric formula

dA ™! dA

— = —-Al—=A"" (C-3)

dTr T

which results from differentiating both sides of the identity A~'A
= I, followed by application of the leftmost equation C-7. Using the
chain rule and taking into account equation C-7, we get

v [-Q; 'P,Q;'Q, + Q; 'P]

d
d—T[Q;‘Ql]

—0’Q, '[P,Q, ' - P1Q; '1Q
-0Q,'Q, 7, (C-9)
where we have used the identity

PQ,' - PQ ' =Q,Q ",

which is a property of the ray-propagator matrix (see, for example,
Cerveny, 2001, equation 4.3.16). Substitution into the Dix velocity
formula C-6 yields

(C-10)

—Ty— 1y~ T
,uQ, Q,u

[@'Q, 'Qul*

(vgh)* = v (C-11)

from which
—Try— 1y =72
v? _ [UTQz Q,u]
M2 T = —1n—T= *
(vgix) llTQz Q, u

Extracting the square root from both sides yields equation 13, given
in the main text.

F? = (C-12)

APPENDIX D

RELATING THE DERIVATIVES
OF VELOCITY IN RAY COORDINATES
AND LOCAL CARTESIAN COORDINATES

As in the algorithm derived by Cameron et al. (2007), our scheme
requires us to connect the derivatives of velocity in ray and local Car-
tesian coordinates. More specifically, we need relations between the
derivatives of the velocity functions v(y, ¥, ¥3) and v(q,42,93)-
First-order derivatives in the two coordinate systems are connected
by

Jdv aq, dv
L S (D-1)
dyi  9Yidq;
Further differentiation yields
v _ dadqy v e v
dyidy; Iyidy;dqidq; f97i(97’ja%.

We multiply both sides of equation D-2 by derivatives (dy,;/dq,) and
(d7;/9g,,). The resultis

i _a_w_n( i
39,99 94, 9qn

7 ﬂ)

IVidy;  IYVidy;0q)
(D-3)

The derivatives needed specifically for dynamic ray tracing are

0%v/dqndqu. Recognizing that dys/dgy = 0 and that dv/dg;
= v~ '9v/dT, we obtain

P _ @m( v P ﬂ)
IGNI Gy IgN gy \dy Py, dydy;dqk

dy;d 3*qy
_Uflﬂ_YJ_% v (D-4)

Agn Iy Y9y 9T
In a similar way as for velocity v, one can relate derivatives of
traveltime 7 in ray coordinates and local Cartesian coordinates, as
follows:

aT  dq, T
_:ﬂ_’ (D-5)
dy;  dyidqy
IT__ g da 0T
dyidy; dyidy;dqdq,
d9*q, IT
i_. (D-6)
dyidy;dq

In the following, we consider only ray coordinates ;. Moreover, we
recognize that traveltime 7 is constant along a wavefront, which
means that dT/dgx = 0 and 9°T/d7y,0y, = 0. Consequently, equa-
tion D-6 can be restated as

o ki T i 9T
dy;dy;dqgdqr 19711971(7513.

Applying the definition My, = 9°T/dqxdq; and inserting dT/dq;
= v~ !, weobtain

(D-7)
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P4y _ _ 94xdqL

— My;. D-8
Gy, ay, M (D-8)

dyidyy

The last result is substituted into equation D-4, which yields

P _ L%%( v Pk ﬂ)
IGNIGum - Ign gy \d Yy, dyidy;dqk
- My (D-9)
oT

Therefore, for a situation in which the effect of the derivatives
9%qx/dy,dy,isnegligible, we can use in matrix form the approxima-
tion

T _ Q’Ta—QO’l TRV (D-10)
o ooyt Lo’

where M, = P,Q; .

APPENDIX E

COMPUTATION OF VELOCITY DERIVATIVES
ALONG THE IMAGE RAY

In this appendix, we describe an approach for computation of the
first and second derivatives, dv/d+y and d%v/d+?, at each ray coordi-
nate vector vy, that are required for our image-ray tracing scheme.
Twice differentiation of equation 12 yields

M

(9_U - _&Udix M &_F E-1
= Udix (E-1)
dyi dyi dYi
and
v ol by Juy, IF  dvg IF
dyidvy; dyidy, dy; dv; dy; dvyi
9*F
+ v ———. (E-2)
dyidy,

Because v and its derivatives are known, our problem reduces to
finding the derivatives of the velocity-spreading factor F, given by
equation 13. The factor F depends on matrices Q; and Q, of the dy-
namic ray-tracing system. In view of the discussion related to equa-
tion 19, it is clear that for a time-to-depth-conversion procedure
based on tracing single image rays, one has to make the approxima-
tion that the derivatives of factor F with respect to y/,, along a given
ray, are neglected. As a consequence, only the derivatives in equa-
tions E-1 and E-2 of F with respectto 7 survive.

One can show finally that our integration procedure does not rely
on the second derivatives 9%v/dT?, which means calculation of the
second derivative 92F/dT* is not required. Equations E-1 and E-2
therefore can be restated as

M
v gy u 9IF

Jdu z?vﬁ/-fx
g o = Udix
vi  dy; 9T aT aT

and
3*v B ﬁzvﬁfx
dyidyy dyidy,

Given the above approximations, we are reduced thus to the calcula-
tion of dF/dT. For that matter, it is convenient to introduce the quan-
tities

(E-3)

A=19'Q,'Qu and B=1'Q,'Q,u, (E-4)
from which we can write F and dF/JT as (see equation 13)

A JF  JA
and — = —B'? —

A A 0B
- B2 aT  oT

F —.
2B 9T

(E-5)

It remains for us to obtain JA/dT and dB/dT. Working similarly to
the derivation of equation C-9, we readily find

JA
2=T(y— 1y~ T 2
— = —vau u= —vB
°T Q, Q
and
JB
P O3 (USRS | (E-6)

It must be noted that the above formulas for factor F and its deriva-
tive dF/dT cannot be used for zero migration time, for which B = 0.
We find, however, that a second-order approximation for the factor ¥
inthe vicinity of 7 = 0is given by

1 9%
F=1-vT"v'—u, (E-7)
2 ay
whichyields,at7 = 0,
oF
F=1 —=0. (E-8)
oT

In the 2D situation, we have

JF  dQ, s
F=0Q, —=—=vP,, E-9
0, aT AT v ( )

which is reduced to equation E-8 in the limit of zero time because at
thattime, Q; = land P, = 0.

REFERENCES

Black, J. L., and M. A. Brzostowski, 1994, Systematics of time-migration er-
rors: Geophysics, 59, 1419-1434.

Cameron, M. K., S. Fomel, and J. A. Sethian, 2006, Seismic velocity estima-
tion and time to depth conversion of time-migrated images: 76th Annual
International Meeting, SEG, Expanded Abstracts, 3066—3070.

,2007, Seismic velocity estimation from time migration: Inverse Prob-

_ lems, 23, 1329-1369.

Cerveny, V., 2001, Seismic ray theory: Cambridge University Press.

Fomel, S., 2003, Time migration velocity analysis by velocity continuation:
Geophysics, 68, 1662-1672.

Hale, D., 1984, Dip-moveout by Fourier transform: Geophysics, 49,
741-757.

Hubral, P., 1977, Time migration — Some ray theoretical aspects: Geophysi-




S114 Iversen and Tygel

cal Prospecting, 25, 738-745.

Hubral, P., and T. Krey, 1980, Interval velocities from seismic reflection time
measurements: SEG.

Iversen, E., 2006, Amplitude, Fresnel zone, and NMO velocity for PP and SS
normal-incidence reflections: Geophysics, 71, no. 2, W1-W14.

Iversen, E., K. Astebol, and H. Gjgystdal, 1987, Time-to-depth conversion of
3D seismic interpretation data by use of “dynamic image ray”: 49th Annu-
al International Meeting, European Association of Exploration Geophysi-
cists, Extended Abstracts, 16.

, 1988, 3D time-to-depth conversion of interpreted time-migrated hori-

zons by use of the paraxial image ray method: Internal report, NORSAR,

Norway.

Popov, M. M., and I. PSencik, 1978, Computation of ray amplitudes in inho-
mogeneous media with curved interfaces: Studia Geophysica et Geoda-
etica, 22, 248-258.

Robein, E., 2003, Velocities, time-imaging and depth-imaging in reflection
seismics: Principles and methods: EAGE.

Tygel, M., J. Schleicher, and P. Hubral, 1996, A unified approach to 3-D seis-
mic reflection imaging, Part II: Theory: Geophysics, 61, 759-775.

Whitcombe, D. N., 1994, Fast model building using demigration and single-
step ray migration: Geophysics, 59, 439-449.

Yilmaz, O., 2001, Seismic data analysis: Processing, inversion, and interpre-
tation of seismic data, v. 1 and 2: SEG.



