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ABSTRACT

Starting from a given time-migrated zero-offset data volume and time-migration ve-
locity, recent literature has shown that it is possible to simultaneously trace image
rays in depth and reconstruct the depth-velocity model along them. This, in turn,
allows image-ray migration, namely to map time-migrated reflections into depth by
tracing the image ray until half of the reflection time is consumed. As known since the
1980s, image-ray migration can be made more complete if, besides reflection time,
also estimates of its first and second derivatives with respect to the time-migration da-
tum coordinates are available. Such information provides, in addition to the location
and dip of the reflectors in depth, also an estimation of their curvature. The expres-
sions explicitly relate geological dip and curvature to first and second derivatives of
reflection time with respect to time-migration datum coordinates. Such quantitative
relationships can provide useful constraints for improved construction of reflectors
at depth in the presence of uncertainty. Furthermore, the results of image-ray migra-
tion can be used to verify and improve time-migration algorithms and can therefore
be considered complementary to those of normal-ray migration. So far, image-ray
migration algorithms have been restricted to layered models with isotropic smooth
velocities within the layers. Using the methodology of surface-to-surface paraxial

matrices, we obtain a natural extension to smooth or layered anisotropic media.

Key words: Anisotropic media, Image ray migration, Image rays, Reflector dip and
curvature, Time migration.

INTRODUCTION lateral velo.ci.ty \.Iariations (Rol?ein 2(')03)..An 9ption to correct
lateral positioning errors of time migration is to convert the

Time migration, either post-stack or pre-stack, is widespread
used in seismic processing to produce initial time-domain im-
ages and velocity in a simple and efficient way (Hubral and
Krey 1980; Yilmaz 2000). Together with its advantages of
computational efficiency and robustness with respect to a
background velocity model, time migration has the drawback

of producing distorted images, in some cases, even under mild

" E-mail: mtygel@gmail.com

© 2011 European Association of Geoscientists & Engineers

time-migrated images into depth, which includes, as an oblig-
atory step, the conversion of the time-migration velocities into
a corresponding depth-velocity field.

We consider a seismic experiment where source and receiver
locations have been mapped to a flat recording datum surface.
On the other hand, time migration uses a flat time-migration
datum surface on which the traces of the migrated data are
specified. The two lateral coordinates along the recording da-
tum surface and the recording time form the three-dimensional
offset. A

recording domain at zero source-receiver
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Figure 1 a) Normal-ray and b) image-ray trajectories for a syncline-

shaped reflector in a homogeneous isotropic velocity field. The veloc-
ity is 2.5 km/s.

corresponding time-migration domain (at zero offset) is
formed by the two coordinates in the time-migration datum
surface and the migration time. For simplicity the two da-
tum surfaces are assumed to coincide,— thus we refer to just
datum surface in the following.

The theoretical explanation of the time-migration proce-
dure has been given in Hubral (1977) by means of the con-
cept of image rays. For an isotropic medium, the image ray
starts normally to the datum surface and travels down to hit,
generally non-normally, the (selected) reflector. In this way, it
can be seen as complementary to a normal ray, which starts,
generally non-normally, at the datum surface and hits nor-
mally the reflector. For an anisotropic medium, the notion of
normal pertain to the phase directions.

A better insight on the advantages and limitations on the
time-migration process can be gained by simple numerical
simulations. In Fig. 1 we show normal- and image-ray fields
for a syncline-shape reflector situated in a homogeneous and
isotropic depth-velocity field. The normal-ray trajectories in
Fig. 1(a) are normal to the reflector, whereas the image-ray
trajectories in Fig. 1(b) are perpendicular to the datum sur-
face. Corresponding reflection times computed by ray tracing
are shown in Fig. 2. We note a triplication in the recording
domain (Fig. 2a) and a single-valued reflector image in the
time-migration domain (Fig. 2b). The introduction of a caus-
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Figure 2 Two-way times, in a) the recording domain and b) the time-
migration domain, corresponding to the ray fields shown in Fig. 1.

tic in the image-ray field implies that there is no longer a
one-to-one correspondence between points in the depth do-
main and the time-migration domain. Caustics and triplica-
tions in the image-ray field are therefore incompatible with
the basic assumptions inherent to seismic time migration. As
a consequence, it is mandatory to smooth the depth-velocity
field to ensure that the mentioned one-to-one correspondence
between the domains is not violated.

Recently, Cameron et al. (2006, 2007) unveiled the theo-
retical relationship between time-migration and time-interval
velocities and presented algorithms to trace image rays from a
given time-migration velocity field. A modified algorithm for
the same purposes has been also presented in Iversen and Tygel
(2008). Application of the theory to actual time-to-depth con-
version has been presented in Cameron ef al. (2008). The
above papers show that isotropic depth velocities and also
image rays can be constructed from a given time-migration
velocity field. As a consequence, individual time-migrated re-
flections can be readily converted into depth by simply moving
time samples along the image ray.

© 2011 European Association of Geoscientists & Engineers, Geophysical Prospecting, 60, 201-216



As well recognized in the seismic literature, more detailed
velocity information and images can be gained if not only
traveltimes but also slopes and curvatures (e.g., first and
second derivatives of traveltime with respect to record-
ing coordinates) are estimated from the data. Examples in
this direction include, among others, plane-wave destructors
(Claerbout 1992; Fomel 2002), time-domain seismic imag-
ing using local event slopes (Douma and de Hoop 2006;
Fomel 2007), the common-reflection-surface (CRS) stacking
method (Hertweck et al. 2004) and the multifocus (MF) stack-
ing method (Landa et al. 1999), as well as macro-velocity
model building by the methods of stereotomography (Bilette
and Lambaré 1998) and Normal-Incidence-Point (NIP)-wave
tomography (Iversen and Gjoystdal 1984; Duveneck 2004).
On the modeling side, we mention that reflector curvatures
can be used in the study of deformation of geological surfaces
and analyzing the folding or faulting of the interface between
adjacent layers (see, e.g., Samson and Mallet 1997).

Under a given depth-velocity model, the problem of deriv-
ing the position, dip and curvature of a reflector in depth
from measurements of reflection time and its first and sec-
ond derivatives has a long history in the literature. For the
case of normal-incidence non-converted primary reflections
in isotropic media, a solution has been given in Kleyn (1977)
(see also references therein). Ursin (1982) extended that so-
lution to finite-offset reflections and incorporated estimation
of reflector curvatures. The procedure to convert a reflection
traveltime to the reflector in depth along normal-incidence
rays is referred to as normal-ray migration or, simply, as map
migration.

In general, map migration and forward modeling are com-
bined for the purpose of inverting a depth-velocity model from
a set of observed reflections. Iterative use of forward mod-
elling and map migration, together with an error optimiza-
tion scheme are combined to update a given depth-velocity
model until the forward modeling of the reflectors honor the
observed reflection data. A typical situation is the inversion
of depth models with some a priori structure, e.g., homo-
geneous isotropic layers with curved interfaces, see Hubral
and Krey (1980), Gjoystdal and Ursin (1981). Extensions al-
lowing velocity gradients in the layers are given in Iversen
and Gjeystdal (1984) and Biloti et al. (2002). A discussion
of such algorithms is outside the scope of this work. Al-
though very attractive from the theoretical point of view,
map migration from normal-incidence or common-shot reflec-
tions face challenges in their application because of their high
dependency on a complete velocity model and the difficul-
ties (e.g., multipathing and triplications) in identifying (pick-
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ing) reflections and their first and second derivatives in the
data.

Based on the more robust properties of time-migrated re-
flections (e.g., collapse of diffractions, untangle of triplica-
tions, and less sensitivity of a macro-velocity model), a similar
algorithm, referred to as image-ray migration has been pro-
posed by Hubral and Krey (1980). That process connects the
time-migrated non-converted primary reflections to the reflec-
tor following downgoing image rays from the datum surface
into depth. In this way, image-ray migration is very similar
to normal-incidence migration, in which downgoing normal
rays are used to reach the reflector. Also for a depth model of
homogeneous isotropic layers with curved interfaces, Hubral
and Krey (1980)’s algorithm was able to depth propagate non-
converted primary reflections in the time-migration domain.
In later studies (Iversen et al. 1987, 1988) image-ray migration
is extended to models with heterogeneous isotropic layers.

Image-ray migration is founded on consistency with re-
spect to the time-migration process previously applied to the
seismic data. Errors and inconsistencies introduced by time-
migration will therefore propagate into the results of the sub-
sequent image-ray migration. On the other hand, this can be
turned into something positive: one can foresee that the re-
sults of image-ray migration are used to verify and improve
time-migration algorithms. In that perspective, the image-ray
mapping results will be complementary to those obtained by
normal-ray migration.

We use in the derivation the powerful techniques of surface-
to-surface paraxial matrices (see, e.g., Bortfeld 1989; éerven}’f
2001; Moser and Cerveny 2007) to suitably modify and ex-
tend the image ray migration algorithm to account for full
anisotropy and heterogeneity. We remark that the adopted
term ‘surface-to-surface paraxial matrix’ used in this work
has been introduced by Moser and Cerveny (2007) to replace
the older and more commonly used term ‘surface-to-surface
propagator matrix’. Technical reasons for doing so can be
found in that publication. The proposed methodology is il-
lustrated using synthetic data sets for a single-interface 2D
anisotropic model and a multi-layered 3D isotropic model.
Results obtained by these first and basic applications are very

encouraging.

PARAMETERS OF ZERO-OFFSET
REFLECTIONS IN THE TIME-MIGRATION
DOMAIN

Routinely applied to recorded seismic data, stacking to zero

offset (e.g., by the common-midpoint (CMP) method) and
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subsequent poststack time migration are able to produce first
time images of the subsurface in a robust and efficient way.
Stacking transforms the recorded data, defined in terms of
trace location (i.e., source-receiver midpoint and half-offset)
and time, into a simulated recording-domain volume at zero
offset in terms of trace location (CMP coordinates) and
recording time. In the same way, pre-stack time migration and
subsequent stacking transforms the recorded data into a zero-
offset time-migration domain (also a volume), defined by trace
location (e.g., common-image-gather (CIG) coordinates) and
migration time. More specifically, at least for primary events,
zero-offset stacking (respectively, prestack time migration +
zero-offset stacking) transforms recorded reflections at finite
offsets into corresponding reflections under normal-incidence
(respectively, image-ray) illumination. In a sense, both proce-
dures can be seen as data reduction transformations from the
five-dimensional recording domain into the three-dimensional
recording or time-migration domains at zero offset.

From now on, we will restrict our attention to non-
converted zero-offset reflections in the time-migration do-
main. In this context, the (two-way) traveltime for a fixed
reflector, TM(m), will be described by the second-order
Taylor expansion

1
T(m) = TM + m"pM + EmTlvtMm. (1)

in which m = (m, m,)T specifies the trace location along the
datum surface, M. The approximation is valid in the vicinity
of a reference trace, for simplicity taken at the origin m = 0.
Moreover the coefficients
0 gt (G0). and MY= (ﬂ) @)
amy omyomy

are reflection-time parameters evaluated at m = 0. T (m) can
be interpreted as twice the traveltime along the image ray from
the initial point with coordinate m on the datum surface to
the point where it hits the reflector, the image-ray incidence
point (IIP). Also, T} = TM(0) represents the same quantity
computed at the reference point.

Throughout this paper, the traveltime, T}, as well as the

M and

linear (slope) and quadratic (curvature) parameters, p
MM in equation (2) are considered as measured quantities. It
is our aim to characterize the geometric attributes, namely dip
and curvature of the reflector at the IIP in depth, as functions

of the reflection-time parameters T)', pM and MM.

COORDINATE SYSTEMS

The formulation of our problem requires an adequate selec-
tion of coordinates. Here, we will consider, besides coordi-

oM M

>

y

Figure 3 Image ray (green) between the point OM in the datum sur-
face M (black) and the point OF in the reflector surface Z (red).
Associated quantities defined in the text: local Cartesian coordinates

V3

at datum (m and m3), reflector (z and z3), and wavefront (y and y3);
unit normals to wavefront (i) and reflector ().

nates at the datum and reflector surfaces, also auxiliary so-
called wavefront coordinates.

Datum and reflector coordinates

Referring to Fig. 3, points on the datum surface, M, and
the reflector, Z, in the vicinity of the initial and final points
of a selected reference (central) image ray will be specified
by local 3D Cartesian systems, th = (m;, my, m3)T and 2 =
(z1, 22, 23)T, respectively. Correspondingly, we also use the
simplifying notations m = (m, m,)" and z = (21, 22)7. These
systems will be referred to as datum and reflector coordinate
systems. For time-migration, it is common to take the datum
surface as planar horizontal, to avoid surface-induced image
distortions. Figure 3 depicts this usual scenario, adopted in
this work.

The t-system has its origin at the initial point, O™, of the
reference image ray on the datum surface. The m3-axis points
in the direction of the surface normal to M at O™, namely,
vertically down. Moreover, the (orthogonal) m2;- and #1,-axes
lie at M, so as to form a right-handed Cartesian (1, m1,, m3)
system. We note that the orientations of the axes 7; and m,
are unique only up to a rotation around the m;3-axis.

The 2-system has its origin at the endpoint, O = IIP, of the
central image ray and its axis z; points in the direction of the
normal of Z at OF. The remaining (z;- and z,-) axes lie on
the tangent plane to Z at OF. The locations of the axes z; and
2z are unique up to an arbitrary rotation about the reflector
normal (z3-axis). In local Cartesian reflector coordinates, the

© 2011 European Association of Geoscientists & Engineers, Geophysical Prospecting, 60, 201-216



reflector is assumed in the form

73 =2%(z), (3)

with the properties

ax= ?x?

z f— — f— — T
¥<(0) =0, . (0)=0, and BZBZT(O) = -D, (4)

where D is the reflector curvature matrix. The two left-most
equations above incorporate the fact that the reflector is tan-
gent to the plane formed by the z-coordinates at the origin,
O°.

We observe that, although the system fm can be readily
constructed on the (known) datum surface, this is not the case
for the Z-system, constructed on the (unknown) reflector. As
seen below, the Z system (together with the reflector dip at
O?) will be determined from the knowledge of Th, p™. The
reflector curvature at OF will additionally require the matrix
MM,

Wavefront coordinate system

As indicated above, we assume that a depth-velocity model is
known. The image-ray incidence point, O, can also be con-
sidered known. It is obtained by following the central image
ray trajectory until the time # = T}!/2 is consumed. Moreover,
the slowness vector, p, is normal to the wavefront at OF so
that

p=—A, (5)

[SRIE

where 1 denotes the wavefront unit normal and c is the phase
velocity.

We introduce a local Cartesian wavefront coordinate sys-
tem, ¥ = (y1, 2, y3)7, with origin at the point OF (Fig. 3),
defined such that the y; axis is parallel to the wavefront unit
normal vector, fi. Quantities belonging to the wavefront coor-
dinate system are denoted with a superscript Y. In particular,
for the slowness and ray-velocity (group-velocity) vectors p¥
and V¥ we have

Ay _ 0 SY _ vY
P‘<1/c>’ v—<c>. (6)

The vector vY is zero if the medium is isotropic at OF.

RELATIONS BETWEEN WAVEFRONT AND
REFLECTOR COORDINATES

Following Cerveny (2001) the transformation from local
wavefront to reflector coordinates is described to the first
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order by the relation
2 =Gjy. (7)

Being a coordinate transformation between Cartesian coordi-
nate systems, matrix G is an orthonormal rotation matrix. As
such, it satisfies the relation G! = G7, and also

GGT=GTG =1, (8)
in which I is the 3 x 3 identity matrix. The matrix G has as
columns the unit vectors of the wavefront coordinate system
expressed with respect to the reflector coordinate system. The
third column of matrix G is therefore a unit vector normal
to the wavefront in Z-coordinates. That vector is denoted by
1% = (n?, n¥, n%)T, where the superscript Z signifies that the
vector belongs to the reflector coordinate system. The same
vector, not referred to a coordinate system, is denoted by f. In
the same way, the orthonormality of matrix G (equation (8)),
implies that the third row of that matrix is given by the trans-
pose of the unit vector normal to the reflector, expressed in
j-coordinates, namely »" = (v, v),v))". The same vector,
not referred to a coordinate system, is denoted by . The first
two-component versions of the above vectors are denoted by
n?, v¥, n, v, respectively. Vector 9 is very important as it

defines the reflector dip. Note especially that
v =nf{=0"9#0. 9)

The last inequality above follows from the assumption that
the central image ray hits the reflector. As such, the vectors i
and » cannot be perpendicular. In accordance with Cerveny
(2001), we let G denote the 2 x 2 upper left sub-matrix of
matrix G. Moreover, we adopt the form of matrix G used by
Iversen (2005),

R G n?
G= (10)
T ,
VY G33
where the two-component vector, vY, is the projection of the
full reflector normal, #”, onto the y-plane, and G35 = n% =

Y .
v;. Setting

f= with 1) =d+—— (11)

NSES O

the reflector normal can be given as

ﬁY=v3Y<_1f>. (12)

Note that a convention for the vector direction must be speci-

vY 1
-,
3

fied. By selecting ‘+ or ‘—’ the reflector normal will be point-
ing in the same or opposite direction to that of the image-ray

© 2011 European Association of Geoscientists & Engineers, Geophysical Prospecting, 60,201-216
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slowness vector, that means, down and up, respectively. By
substituting expression 10 into the far-left equation (8), one
has, after some small rearrangement, the relationship

p? = %Gf. (13)

Determination of matrix G

We briefly discuss how to determine the matrix G and start
by recalling that the vector #" coincides with the z3-axis of the
2-system. The specification of the two remaining (z1, z,)-axes
can be constructed according to any preferred convention, as
long as to make up a right-handed Cartesian system. Note
especially that it is not necessary to require the local reflector
coordinate system to be aligned with the plane of incidence. A
simple choice for the coordinate axis (Z1, Z,, Z3) of the Z-system
is to set Z; = v and to define the remaining axes as

}A’ZX\AJ

7 = and Z, =V x Z;. (14)

192 x|
The above definitions yield

~ A A v\ T
G=(2 % z)

Y Y
Y3 0 M
a a
Y.y Y. Y . 2 2
= iva vy |, with a=/v]" +v]".
a
Y Y Y
Vi vy V3

(15)

Note, in particular, that if f is parallel to 23, the transforma-

tion matrix reduces to the identity matrix, G = I.

SURFACE-TO-SURFACE PARAXIAL MATRIX

For various purposes, it is convenient to introduce the 4 x
4 surface-to-surface paraxial matrix of the one-way central
(downgoing) image ray

A B

T= ; (16)
c D

in which A, B, C and D are 2 x 2 matrix components. The
surface-to-surface paraxial matrix, T establishes a linear rela-
tionship

dm
(‘SZZ) -T , (17)
5p spM

between the 4 x 1 dislocation vectors in position and slow-

ness of the paraxial and reference image rays, §(m;, m,, pl,

pNT and 8(z1, 22, p7, p5)7, respectively at their initial points
on the (known) datum surface, M, and endpoints on the (un-
known) reflector, Z. Detailed descriptions and applications of
the surface-to-surface paraxial matrix concept can be found
in e.g., Bortfeld (1989), Schleicher ef al. (2007) and Moser
and éerven}? (2007).

Following (Cerveny 2001), the wavefront coordinate sys-
tem allows for the computation of the submatrix systems (Q;,
P;) and (Q>, P»), which correspond to hypothetical wavefront
solutions initialized in the same point as an ‘exploding’ plane
(subscript 1) and a point explosion (subscript 2). The two

solutions form the 4 x 4 ray-propagator matrix,

Q Q
= , (18)
P, P,

defined with respect to initial and final wavefront tangent
planes at the points OM and OF on the central image ray. As
such, the matrix II is an inherent property of this image ray,
defined independently of the reflector.

The introduction of the y-system enables the decomposition
of the paraxial matrix in the form

T = YII, (19)

where Y is the so-called projection matrix, which embodies
the properties of the reflector and provides the link between
the paraxial matrices T and II. With the help of the matrix G,
we can obtain an explicit expression of the projection matrix,
Y, included in equation (19). It is given by (Cerven}’r 2001,
equation 4.14.68)
(G _ Aan)—T 0
Y = . (20)
(E— piD)(G—A")"" (G- A™)

where the superscript —T denotes the transpose of the inverse.
The 2 x 2 matrix E, referred to as the inhomogeneity matrix

(éerven}? 2001, equation 4.14.55), is given by
1
E; = ;|:GI3G]M my + Gy3Grr ny
1
+ G13Gy3 (77%/ — ;ﬂZULY> ], (21)

in which I, J, K, L, M = 1, 2 and Einstein’s summation con-
vention is assumed. The symbol A?" stands for the 2 x 2

anisotropy matrix (éerven}’f 2001, equation 4.14.56),

. 1
A" =pZyY" = ZGRYT, (22)
c

Y

where equation (13) has been also used. The entities v;* and

n:¥,i=1,2, 3, are components of the ray-velocity vector ¥¥

© 2011 European Association of Geoscientists & Engineers, Geophysical Prospecting, 60, 201-216



and the ‘eta vector’ §* = dp¥/dt (derivative of slowness vector
with respect to traveltime) specified in wavefront coordinates
(Cervenjr 2001, equation 4.14.12). For isotropic media, we
have A" = 0. It is to be observed that in many situations, one
can also consider that E = 0. For example, this is the case if
the medium is locally homogeneous. The matrix E is also zero
if the slowness vector is normal to the reflector.

Inserting the projection matrix equation (20) into the de-
composition equation (19), the paraxial matrix components
can be recast as

A=(G-A"TQ, (23)

C=(E-pD) A+ ATQ,"P,, (24)
and similarly

B=(G-A")"Q, (25)

D=(E-piD)B+BQP,. (26)

EXPRESSIONS FOR REFLECTOR
DIP AND CURVATURE

The one-way traveltime along image rays from the datum
surface to the reflector is denoted here as 7 (m). In Appendix
A we derive fundamental equations for the first and second
derivatives of the function 7. These relations are used in the
following to obtain expressions for dip and curvature of the
reflector. The key relationship in this context is the condition

TM(m) = 27 (m), (27)

which we differentiate twice with respect to coordinates (m11,

m,) and evaluate at m = 0.

Reflector dip

The reflector dip f, in wavefront coordinates, has to satisfy
equation (13) derived above. Moreover, by applying the con-
dition (27) to the fundamental relation (A14) involving the
surface-to surface traveltime gradient we obtain

1
pr=JATp", (28)

where pM = 9TM/dm is assumed known. We shall also need
equations (22) and (23) specifying, respectively, the matrices
A" and \A. Combining all this yields the result

c

=3

(1+1)7'Q"p", (29)
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where the scalar « has the definition
1 yr,
K= 5vy Q; "pM. (30)

If the medium is isotropic at the point O, we have x = 0.
Taken into account equations (11) and (12), the sought-
for reflector unit normal, ¥, is obtained. The transformation
matrix G can also be computed, e.g., using equation (15).
Knowing G we can obtain matrices E, A*, and A, which are

needed for estimation of reflector curvature.

Reflector curvature

In the following we use equations (A23) and (A24) from
Appendix A which connect the curvature matrix to second
derivatives of surface-to-surface traveltime. Taking into ac-
count the condition (27), we obtain

%MM =AT (E +A QP A - %D) A. (31)

Minor rearranging of equation (31) then yields
1
D =7 [E +A7" ( Hi EMM) .A*‘] : (32)

It may be desirable to express the component ¢% in terms
of the scalar « defined in equation (30). This yields (see

Appendix B)
z
z_ "
Vi =T (33)

where 77 is given by equation (9).
Equation (32) provides the sought-for reflector curvature,
thus completing the solution of our problem. As a byproduct,

6 2.25
A[}.S _ 2.35
= 24
Eio £ 2%
= > 2.55]
515 g
a S 265
2.0 >
Z2.75
2.5
-1.0-0.5 0.0 0.5 1.0 285

Horizontal distance (km)

Figure 4 Experiment 1: Cylindrical reflector situated in a heteroge-
neous tilted transversely isotropic medium. Image ray trajectories used
for generation of ‘observed’ two-way times in the time-migration do-
main are superimposed.
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Figure 5 True (magenta) and estimated (blue) values of a) depths, b) dips and c) curvatures for the cylindrical reflector shown in Fig. 4. The

true anisotropic velocity model was used for image-ray migration.

the knowledge of dip and curvature quantities allows us to
obtain the complete surface-to-surface paraxial matrix of the
central image ray, as specified above by equations (23)—(26).

Summarized procedure

It is instructive to summarize the obtained results in an al-
gorithmic form. We assume that a depth-velocity model is
available and an identified non-converted primary reflection
within a zero-offset time-migrated data volume is given. For
any given common-image gather location O in the datum
surface we use known reflection-time parameters T%', pM, and
MM (equation (2)) to compute the corresponding depth loca-
tion, dip, and curvature at the image-ray incidence point, O%.
i Image-ray incidence point: Starting at O, trace the im-
age ray downwards using the given depth-velocity model.
Recall that the image ray has its phase direction normal
to the datum surface at OM. The image ray reaches O?
when half the given traveltime, T}'/2, is consumed. The
ray-tracing procedure yields the slowness (p), ray-velocity

(¥), and eta (i) vectors at OZ;

=4

ii Wavefront coordinate system: Construct the y-wavefront
coordinate system, setting its origin at O° and the y;3-
axis pointing in the direction of the slowness vector, p.

Set the remaining axes, so as to make up a right-handed
orthonormal system. Then compute the ray-velocity vec-
tor in y-coordinates, ¥";

=

iii Reflector dip vector: The reflector dip vector, $, is given
by equation (12), once the vector f is obtained. That vec-
tor is computed using equations (29) and (30);

iv Matrices Q; and P;: Still using the given depth-velocity
model, apply dynamic ray tracing to determine the sub-
matrix system (Qq, P;), which corresponds to the hypo-
thetical wavefront solution initialized at the point O as
an ‘exploding’ datum plane;

v Matrices G and .A: With the knowledge of the dip vector,
matrix G is computed by equation (15). Using matrix G
we compute the inhomogeneity matrix E (equation (21))
and the anisotropy matrix A (equation (22)) at OZ.
Matrix A is obtained by equation (23), with the help of
equation (13);

vi Reflector curvature matrix: This matrix is computed by
equation (32).

NUMERICAL EXAMPLES

In this section we present two numerical examples of mapping
reflection-time parameters belonging to the time-migration
domain to corresponding parameters in the depth domain,
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Figure 6 True (magenta) and estimated (blue) values of a) depths, b) dips and ¢) curvatures for the cylindrical reflector shown in Fig. 4.

Anisotropy was ignored in the image-ray migration.
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Figure 7 Experiment 2: a) 3D view of image ray trajectories starting
along the line y = 10.5 (km) in the datum surface, b) projection of
the same trajectories into the cross section x = 14 (km).

using a known macro-velocity depth model. Observe that
depth-domain coordinates are from now on referred to as

(x5 ¥ 2).

Experiment 1: 2D anisotropic model

Consider a cylindrical reflector situated in a smooth 2D
anisotropic medium (Fig. 4). The anisotropy is of type TTI
(tilted transversely isotropic) with a fixed symmetry axis in
the direction specified by the vector (u,, u,, u.) = (0.1, 0, 1).

0 15
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g° §27

: g3.1I
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Figure 8 Cross section x = 14 (km) of the model in Fig. 7 after velocity
smoothing with Hamming radius 0.8 km.
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The P-wave velocity along this axis is given by the linear func-
tion Vp(x, z) = 2.28 + 0.02x + 0.2z [km/s], while the corre-
sponding S-wave velocities are computed using Poisson’s ratio
so that Vs(x, z) = Vp(x, 2)/+/3. Thomsen’s parameters ¢ and
8 have the values 0.2 and 0.1, respectively. The cylindrical
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Figure 9 Simulated reflection time in the time-migration domain
corresponding to the selected depth reflector, confined between the
depths 2.97 and 3.27 km.
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Figure 11 Slope y of the reflection time in Fig. 9.

reflector has its axis in the y-direction and a radius of 1 km.
The axis passes through the reference point (0, 0, 2.5) (km).
To obtain synthetic measurements we traced image rays
from the datum surface until they hit the cylinder. One can
observe (Fig. 4) that the resulting ray trajectories are not per-
pendicular to the datum surface. Computed ray traveltimes
were multiplied by two and used for generation of a cubic
B-spline function. From this function we obtained ‘measured’
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Figure 13 Second derivative yy of the reflection time in Fig. 9.
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Figure 14 Second derivative xy of the reflection time in Fig. 9.
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input parameters (times, slopes, and second derivatives) to be
used for estimation of reflector depths, dips, and curvatures.
Figure 5 compares exact values of the cylinder depth, dip,
and curvature to those estimated using our image-ray migra-
tion approach in the true velocity model. The theoretical re-
sults are confirmed through this example, but it is important
to remark that the curvature estimation is particularly exposed
to small numerical errors as well as to measurement errors.
Therefore, to obtain reliable results in ‘real’ situations it will be
critical to perform appropriate smoothing of the input time
parameters. We also did an image-ray migration test where
anisotropy was ignored in the velocity model (Fig. 6). One
can then observe a significant mispositioning of the estimated
reflector and corresponding systematic errors in estimated dip

and curvature.

Experiment 2: 3D isotropic model

A 3D isotropic model (Fig. 7) containing planar and curved
non-intersecting interfaces was chosen as the ‘true’ model. By
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Figure 15 Depth a) of the true depth reflector and b) estimated by the
image-ray migration method.
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tracing image rays in this layered model, we obtained reflec-
tion time maps in the time-migration domain, one such map
for each model interface.

Although input reflection time maps were obtained using
the layered model in Fig. 7, it is more natural for the image-
ray migration procedure to use a velocity grid, as is common
in time and depth migration. Appropriate smoothing of this
depth-velocity field is a must. Here we used smoothing in
the form of a repeated processing by a Hamming operator,
applied independently to the various coordinate directions.
This Hamming-operator smoothing is constrained by a certain
aperture or radius, defined as the maximum distance within
which a given data sample contributes to the smoothing of
neighboring samples. For the model under consideration, the
Hamming radius was set to 0.8 km. A cross section through
the smoothed model is shown in Fig. 8, it is to be compared
to the corresponding cross section through the layered model
in Fig. 7(b).

Results of the image-ray migration procedure are pre-
sented here for one single reflector, namely, the one with
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Figure 16 Dip x a) of the true depth reflector and b) estimated by the
image-ray migration method.
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Figure 17 Dip y a) of the true depth reflector and b) estimated by the
image-ray migration method.

depths ranging between 2.97 and 3.27 km. The input re-
flection time parameters for this selected reflector are shown
in Figs 9-14. The six input parameters are the reflection
time, the slopes in the x and y directions, the main sec-
ond derivatives (xx and yy), and finally the mixed second
derivative (xy). In Figs 15-20 we compare parameters of
the true depth reflector to those estimated by the image-ray
migration. The parameters are the reflection depth, the re-
flector dips (x and y), and the associated second derivatives
(xx, yy, xy).

The mean error in the estimated depth of the selected re-
flector is 9 m. This is to be compared to the mean depth
of the reflector, which is 3152 m. Furthermore, compari-
son of the true and estimated first and second derivatives
shows a high degree of consistency, thus indicating that the
method has a good potential for success in practice, when
applying a sufficiently smooth depth-velocity model. More
smoothing is required to obtain consistent dips than consis-
tent depths, and even more smoothing is required to obtain
consistent second derivatives. By comparing the output maps
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Figure 18 Second derivative xx a) of the true depth reflector and b)
estimated by the image-ray migration method.

in Figs 15-20 to the input maps in Figs 9-14 one gets an im-
pression of the distortions introduced by the smoothed (and
therefore slightly erroneous) velocity model. For more dedi-
cated studies concerning sensitivity of mapped reflectors with
respect to the velocity model, see e.g., Parkes and Hatton
(1987).

CONCLUSIONS

Considering non-converted primary-reflected waves, the geo-
logical dip and curvature of a reflector can be expressed in
terms of the traveltime and its first and second derivatives in
the time-migration domain. The obtained expressions extend
previous results in the literature to fully anisotropic and het-
erogeneous layered media. In addition, the formulation uses
the machinery of surface-to-surface paraxial matrices, mak-
ing the derivations more simple and transparent. Potential
application of the obtained results can be, for example, the
construction of selected reflectors in depth to help setting con-
straints for velocity-model building. The presented image-ray
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Figure 19 Second derivative yy a) of the true depth reflector and b)
estimated by the image-ray migration method.

migration technique relies on consistency with respect to the
time-migration process applied previously to the seismic data.
One can therefore foresee its results used for the purpose of
verifying and improving time-migration algorithms. In this
way, the image-ray migration results can be seen as comple-
mentary to those obtained by normal-ray (map) migration of
reflection-time parameters in the recording domain. For both
mapping approaches, smoothing of the velocity field and the
measured input parameters is of ultimate importance, espe-
cially concerning estimation of reflector curvature. Synthetic
examples confirm the theoretical results and are encouraging
for further testing and realistic applications.
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APPENDIX A: SURFACE-TO-SURFACE
TRAVELTIME RELATIONS FOR THE
IMAGE-RAY FIELD

In this appendix we derive transformations pertaining to an
exploding-surface ray field, i.e., a ray field where individual
rays are started simultaneously at a given initial (so-called
anterior) surface. The slowness vectors of the rays are normal
to this surface. The rays are captured on a final (so-called
posterior) surface. The image-ray field is a special case of such
exploding-surface ray fields. The initial surface is then the
datum surface, while the final surface is the reflector.

We denote the standard ray coordinates for the image-ray
field as p = (my, my, t)T. Here, t is the traveltime from the ex-
ploding initial surface, M. On the surface M itself we there-
fore have t = 0. As indicated in the main text, we let the datum
surface be planar horizontal. Points on that plane are located
by Cartesian coordinates, m. Such considerations do not imply
essential loss of generality, as the extension to permit a curved
datum surface is straightforward. A fixed, reference (central)
image ray is specified by its starting point at OM, wherem =0
(Fig. A1). The ray hits the reflector surface Z at the point OZ.
Moreover, in the following we take advantage of an alterna-
tive ray coordinate system for the exploding-surface ray field,
described by the vector fi = (1, m,, t%)T. Here the parameter
tZ is the traveltime measured from the surface Z, along which
we have tZ = 0.

The traveltime parameters ¢ and tZ are independent vari-
ables. However, for a point on a given ray, specified by
the vector m, we can connect the two parameters via the
relation

r=t-T, (A1)

where 7 denotes the surface-to-surface traveltime. We remark
that the definition (A1) was chosen so that both traveltimes, ¢
and #2, increase along propagation of the reference image ray.
For an illustration of the traveltime concepts in equation (A1),
see Fig. Al.
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Figure Al Traveltime concepts associated
with the image-ray trajectory (green): 7 is
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oM M

the (surface-to-surface) time between the
point OM in the datum surface M (solid
black) and the point OZ in the reflector sur-
face Z (solid red); ¢ is the time from OM to
a general point O on the image ray; ¢© is
the time from OZ to O. Some contours ¢ =
constant (dashed black) and #Z = constant
(dashed red) are indicated in the vicinity of
the point OZ. The gradient directions corre-
sponding to the traveltimes ¢ and tZ at O%
are signified, respectively, by black and red

arrows.

General properties

Let S be an arbitrary differentiable variable which can be either
a function of the ray coordinates it or the local Cartesian

reflector coordinates Z. The chain rule for derivatives then

yields
N 0S 0z,

=22 % (A2)
o 02 O

In particular, if S = w, one obtains the well-known relation
between the forward transformation matrix (9z,,/04;) and its
inverse (94x/02,,),

% aZm
azm 8/1/1

Sk (A3)

We make the following observations:

o The partial derivatives dzy/dm; are taken for constant ¢Z.
When #Z = 0 we can identify these derivatives as the ele-
ments of 2 x 2 submatrix A of the 4 x 4 surface-to-surface

paraxial matrix, i.e.,

Amr = —. (A4)
377’1[
e The first partial derivatives of z3 with respect to m; are also
taken for constant 2. When m = 0 and ¥ = 0, we have

033
am,

=0. (AS)

To derive the above result, we observe that, if 2 = 0, points
are on the reflector, namely z3 = £(z). As a consequence,
keeping t = 0, we have

023 _ 0X 0Zm

= . (A6)
omy dgp oMy

= constant

equation (AS) now follows, sincez =0 whenm =0, * = 0,
and also (3%/3zx)(0) = 0.

Partial differentiation with respect to t and #Z is equivalent,
since m is kept constant in both situations. Therefore, we

have

ozm azm 7z 023 033 z

—_—— = . _——— = . A7
a2 ot M 0z or 3 (A7)

Considering only differentiation with respect to the first

two components pu; = m; of i in equation (A2) one can

write

N aS 9 0S 9

90 _ % 9%%m 95 0% (A8)
37’711 8ZM 37}’21 8Z3 E)m,

Differentiation with respect to m in equation (A8) is, by
definition, performed for constant . If m = 0 and t* = 0
we use equation (AS) to obtain

aS as 9

95 _ 95 9%Zm (A9)
8m1 BZM 374’[1

The situation k = 3 in equation (A3) is described specifically
by the equations

at? Az 0t? dzs
dzm Imy  dzy dmy

_ tZ dzy  9t% 0y _

dzm 917 9z 0t

(A10)

Using equations (AS) and (A7) for m = 0 and #* = 0 then
gives
e at? 1

— =0, — = —. Al1l
8z, 8Z3 v ( )
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Surface-to-surface traveltime relation: first order

Differentiating equation (A1) with respect to z yields
s or T at® ot T

—_— - —_— = — . (A12)
0ZMm 0Zpm  02m 0z 0z 0z

Using S = 7 in equation (A9),

aT 9 oT 0T 0T

2L gl DD i (A13)
amy domy 0Zm om 0z

and the fact that 32%/9z = 0 then shows that the vector form
of equation (A12) can be restated as
ot T
0z om’

Equation (A14) is a fundamental equation that can be used

(A14)

to relate the dip of the reflector to the gradient, 97 /0m, of
surface-to-surface traveltime. The vector 9#/dz contains the
first two components of the slowness vector at the point OZ.
This slowness vector projection belongs to the local Carte-
sian (z, z3) coordinate system and is equivalently referred
to as

, ot

= (A15)

p

Surface-to-surface traveltime relation: second order

We differentiate the leftmost equation (A10) with respect to

components #2; as follows,

9 (atz dzm  0t% 8z3)

———+ — ——] =0. (Al6)
omy \ d0zy dmy d0z3 omy

Working out the various terms yields

] 3 (ot a? 9%z

dem 9 (2 =02 4 =0, (A17)
amy 3771] 0ZMm 023 8m18m/

where the dots (...) signify terms that contain partial deriva-

tives of the type dz3/dm; or 8t%/dzy. Form = 0 and tZ = 0
all such terms are zero. We now apply equation (A1) in equa-
tion (A17) and insert the surface function z3 = £?(z). Elabo-
rating equation (A17) further utilizing the general differential
operator in equation (A8), and finally requiring m = 0 and
t? = 0, we obtain

?T _ 9ZMm < 3%t

7 - (A18)
87}’11871’1} 87}11 BzMazN

Atz 92x? ) dzn
323 BZMBZN 8771] '

In the above derivations, we have made use of the results

dzm 9 (9t om0t 0
M ( )— il N (A19)

3771’11 37}’1] @ - 37}’11 3ZM3ZN Bm,’

and

a a T a a T T

dzm 9 (7 _ dam 9 <7 =T (A20)
8m1 87}’1] 3ZM am[ 3ZM 37}’1] 81’}’1[871’1]

as well as the properties (4) of the reflector. Using the right-
most equation (A11) and also the definition of the reflector
curvature matrix
?x?
02M0ZN ’

Dyn = — (A21)

also given by equation (4), our final result in component form

appears as
*T a 0%t 1 )
_oL %M — — Dun 9&N (A22)
amlam] Bml BzMazN U3 87’74]
The corresponding matrix form of equation (A22) is
02T rf0*t 1
— = — ——=D| A A23
om? (822 vy > A (823)

equation (A23) is a fundamental relation that relates the cur-
vature matrix, D, of the reflector to the second derivatives of
the surface-to-surface traveltime, 3>7 /9m?.

The matrix 3%#/dz* contains second derivatives of the trav-
eltime from the datum surface taken along the tangent plane
of the reflector. We can therefore compute this matrix as
0%t

a2 Bt ATQ(P.

(A24)

The above matrix is a special version of the product C.A™Y, in

which C is evaluated with zero reflector curvatures.

APPENDIX B: RAY-VELOCITY VECTOR
COMPONENT NORMAL TO THE
REFLECTOR

In this appendix the component v% of the ray-velocity vector
is expressed in terms of the scalar « defined in equation (30).

We start from the relation
T
z=v"y+niy; =ni(y] —f'y), (B1)

obtained from the relationship between y- and 2-coordinates,
as described by equations (7) and (10), and also taking into ac-
count equation (12). Differentiation of both sides with respect
to ¢, yields

U3Z = n%Z (v3y - fTVy) , (B2)

where we recalled that v{ = dzs/dt, v] = dys/dt and v} =
dy/dt. Substitution of f given by equation (29) and after some

rearrangement recovers relation (33).
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